若(x-1)0 =1.则( ) A.x≥1 , B.x≤1, C.x≠1, D.x为任意实数 查看更多

 

题目列表(包括答案和解析)

阅读理解:对于任意正实数a、b,∵≥0,∴≥0,

,只有当a=b时,等号成立.

结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值

(1)根据上述内容,回答下列问题:现要制作一个长方形(或正方形),使镜框四周围成的面积为4,请设计出一种方案,使镜框的周长最小。

设镜框的一边长为m(m>0),另一边的为,考虑何时时周长最小。

∵m>0, (定值),由以上结论可得:

只有当m=       时,镜框周长有最小值是       

(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时△OAB与△OCD的关系.

 

查看答案和解析>>

阅读理解:对于任意正实数a,b,∵()2≥0,∴a-2+b≥0,∴a+b≥2,只有当a=b时,等号成立.结论:在a+b≥2a,b均为正实数)中,若ab为定值p,则a+b≥2,只有当a=b时,a+b有最小值2.根据上述内容,回答下列问题:

(1)若m>0,只有当m=________时,m+有最小值________;若m>0,只有当m=________时,2m+有最小值________

(2)如图,已知直线L1:y=x+1与x轴交于点A,过点A的另一直线L2与双曲线y=(x>0)相交于点B(2,m),求直线L2的解析式.

(3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1于点D,试求当线段CD最短时,点A,BC,D围成的四边形面积.

查看答案和解析>>

阅读理解:对于任意正实数a、b,∵≥0,∴≥0,
,只有当a=b时,等号成立.
结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值
(1)根据上述内容,回答下列问题:现要制作一个长方形(或正方形),使镜框四周围成的面积为4,请设计出一种方案,使镜框的周长最小。
设镜框的一边长为m(m>0),另一边的为,考虑何时时周长最小。
∵m>0,(定值),由以上结论可得:
只有当m=      时,镜框周长有最小值是      
(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时△OAB与△OCD的关系.

查看答案和解析>>

阅读下列材料:

任意给定一个矩形ABCD,一定存在另一个矩形,使它的周长和面积分别是矩形ABCD周长和面积的k倍(k≥2,且k是整数).我们把矩形叫做矩形ABCDk倍矩形.

例:矩形ABCD的长和宽分别为3和1,它的周长和面积分别为8和3;矩形的长和宽分别为4+和4-,它的周长和面积分别为16和6.这时,矩形的周长和面积分别是矩形ABCD周长和面积的2倍,则矩形叫做矩形ABCD的2倍矩形.

解答下列问题:

(1)填空:一个矩形的周长和面积分别为10和6,则它的2倍的矩形的周长为________,面积为________;

(2)已知矩形ABCD的长和宽分别为2和1,那么是否存在它的k倍矩形,使ABBC?若存在,请求出k的值;若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:

若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;

若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.

例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).

(1)已知点A(-,0),B为y轴上的一个动点,

①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;

②直接写出点A与点B的“非常距离”的最小值;

(2)已知C是直线y=x+3上的一个动点,

①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;

②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.

查看答案和解析>>


同步练习册答案