23.证明:(1)连结AD ∵∠DAC = ∠DEC ∠EBC = ∠DEC ∴∠DAC = ∠EBC 又∵AC是⊙O的直径 ∴∠ADC=90° ∴∠DCA+∠DAC=90° ∴∠EBC+∠DCA = 90° ∴∠BGC=180°–(∠EBC+∠DCA) = 180°–90°=90° ∴AC⊥BH (2)∵∠BDA=180°–∠ADC = 90° ∠ABC = 45° ∴∠BAD = 45° ∴BD = AD ∵BD = 8 ∴AD =8 又∵∠ADC = 90° AC =10 ∴由勾股定理 DC== = 6 ∴BC=BD+DC=8+6=14 又∵∠BGC = ∠ADC = 90° ∠BCG =∠ACD ∴△BCG∽△ACD ∴ = ∴ = ∴CG = 连结AE ∵AC是直径 ∴∠AEC=90° 又因 EG⊥AC ∴ △CEG∽△CAE ∴ = ∴CE2=AC · CG = ´ 10 = 84 ∴CE = = 2 查看更多

 

题目列表(包括答案和解析)

阅读下面的材料:

如图(1),在以AB为直径的半圆O内有一点PAPBP的延长线分别交半圆O于点CD

求证:AP?AC+BP?BD=AB2

证明:连结ADBC,过PPMAB,则∠ADB=∠AMP=90

∴点DM在以AP为直径的圆上;同理:MC在以BP为直径的圆上.

由割线定理得: AP?AC=AM?ABBP?BD=BM?BA

所以,AP?AC+BP?BD=AM?AB+BM?AB=AB?(AM+BM)=AB2

 当点P在半圆周上时,也有AP?AC+BP?BD=AP2+BP2=AB2成立,那么:

(1)如图(2)当点P在半圆周外时,结论AP?AC+BP?BD=AB2是否成立?为什么?

(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.

查看答案和解析>>

阅读下面的材料:

如图(1),在以AB为直径的半圆O内有一点PAPBP的延长线分别交半圆O于点CD.求证:AP·AC+BP·BD=AB2

证明:连结ADBC,过PPMAB,则∠ADB=AMP=90o,

∴点DM在以AP为直径的圆上;同理:MC在以BP为直径的圆上.

由割线定理得: AP·AC=AM·ABBP·BD=BM·BA

所以,AP·AC+BP·BD=AM·AB+BM·AB=AB·(AM+BM=AB2

 当点P在半圆周上时,也有AP·AC+BP·BD=AP2+BP2=AB2成立,那么:

(1)如图(2)当点P在半圆周外时,结论AP·AC+BP·BD=AB2是否成立?为什么?

(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.

查看答案和解析>>

阅读下面的材料:
如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O于点C、D,
求证:AP·AC+BP·BD=AB2
证明:连结AD、BC,
过P作PM⊥AB,则∠ADB=∠AMP=90°,
∴点D、M在以AP为直径的圆上;
同理:M、C在以BP为直径的圆上,
由割线定理得:AP·AC=AM·AB,BP·BD=BM·BA,
所以,AP·AC+BP·BD=AM·AB+BM·AB=AB·(AM+BM)=AB2
当点P在半圆周上时,也有AP·AC+BP·BD=AP2+BP2=AB2成立,
那么:(1)如图(2)当点P在半圆周外时,结论AP·AC+BP·BD=AB2是否成立?为什么?
(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来。

查看答案和解析>>

已知.等腰Rt△ABC中,∠A=90°,如图1,E为AB上任意一点,以CE为斜边作等腰Rt△CDE,连结AD,则有AD∥BC,

(1)若将等腰Rt△ABC改为正△ABC,如图2所示,E为AB边上任一点,△CDE为正三角形,连结AD,上述结论还成立吗?答            

(2)若△ABC为任意等腰三角形,AB=AC,如图3,E为AB上任一点,△DEC∽△ABC,连结AD,请问AD与BC的位置关系怎样?答.                

(3)请你在上述3个结论中,任选一个结论进行证明。

图1        图2      图3

查看答案和解析>>

完成下列证明

如图,AB=DC,∠A=∠D

求证:∠ABC=∠DCB.

  证明:连结AC、BD相交点O.

  在△ADB与△DAC中

  因为∠A=∠D(  )

  AD=________(  )

  AB=DC(  )

  所以△ADB≌△DAC(  )

  所以BD=________(  )

  在△ABC与△DCB中

  BD=CA(  )

  AB=DC(  )

  BC=________(  )

  所以△ABC≌△DCB(  )

  所以∠ABC=∠DCB(  )

查看答案和解析>>


同步练习册答案