题目列表(包括答案和解析)
(08年山东卷理)(本小题满分12分)
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,
,E,F分别是BC, PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为
,求二面角E―AF―C的余弦值.
![]()
(本小题满分12分)
如图,已知
,
分别是正方形
边
、
的中点,
与
交于点
,
、
都垂直于平面
,且
,
,
是线段
上一动点.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)试确定点
的位置,使得
平面
;
(Ⅲ)当
是
中点时,求二面角
的余弦值.
(09年湖北八校联考文)(12分)如图,已知正三棱柱
的各棱长都为
,
为棱
上的动点.
(Ⅰ)当
时,求证:
.
(Ⅱ) 若
,求二面角
的大小.
(Ⅲ) 在(Ⅱ)的条件下,求点
到平面
的距离.
(09年莱阳一中期末文)(12分)
如图,已知三棱锥
中,![]()
为
中点,
为
中点,且△
为正三角形。
(1) 求证:
∥平面
;
(2) 求证:平面
平面
;
(3) 若![]()
,
,求三棱锥
的体积。
![]()
(05年山东卷)(12分)
如图,已知长方体![]()
直线
与平面
所成的角为
,
垂直
于
,
为
的中点.
(I)求异面直线
与
所成的角;
(II)求平面
与平面
所成的二面角;
(III)求点
到平面
的距离.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com