(1)设点M的坐标为(x,y).由=-,得P(0,-),Q(,0), 2分 由·=0.得(3.-)(x,)=0,又得y2=4x, 5分 由点Q在x轴的正半轴上.得x>0, 所以.动点M的轨迹C是以为焦点的抛物线.除去原点. 6分 (2)设直线l:y=k(x+1),其中k≠0,代入y2=4x,得k2x2+2(k2-2)x+k2=0,① 7分 设A(x1,y1),B(x2,y2), 则x1,x2是方程①的两个实根.∴x1+x2=-,x1x2=1, 所以.线段AB的中点坐标为(,), 8分 线段AB的垂直平分线方程为y-=-(x-), 9分 令y=0,x0=+1,所以点E的坐标为(+1,0) 因为△ABE为正三角形.所以点E(+1,0)到直线AB的距离等于|AB|, 而|AB|==·, 10分 所以.=, 11分 解得k=±,得x0=. 12分 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,圆M∶(x-1)2+(y-1)2=5在点A(3,2)处的切线方程可如下求解:设P(x,y)为切线上任一点,则由向量方法可得切线方程为:2x+y-8=0,类似地,在空间直角坐标系中,球M∶(x-1)2+(y-1)2+(z-1)2=6在点A(3,2,2)处的切面方程为________.

查看答案和解析>>

设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.

(Ⅰ)求三角形ABC顶点C的轨迹方程;

(Ⅱ)设顶点C的轨迹为D,已知直线过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,满足OP⊥ON,求直线的方程.

【解析】

第一问因为设C(x,y)(

……3分

∵M是不等边三解形ABC的外心,∴|MA|=|MC|,即(2)

由(1)(2)得.所以三角形顶点C的轨迹方程为.…6分

第二问直线l的方程为y=kx+1

y。 ∵直线l与曲线D交于P、N两点,∴△=

,∴

得到直线方程。

 

查看答案和解析>>

已知函数f(x)=x3-x2+ax+b的图像在点P(0,f(0))处的切线方程为y=3x-2

(Ⅰ)求实数a,b的值;

(Ⅱ)设g(x)=f(x)+是[2,+∞]上的增函数.

(ⅰ)求实数m的最大值;

(ⅱ)当m取最大值时,是否存在点Q,使得过点Q的直线若能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

       已知圆O:x2+y2=1,圆C:(x-4)2+(y-4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|;

       (Ⅰ)将两圆方程相减可得一直线方程l:x+y-4=0,该直线叫做这两圆的“根轴”,试证点P落在根轴上;

       (Ⅱ)求切线长|PA|的最小值;

(Ⅲ)给出定点M(0,2),设P、Q分别为直线l和圆O上动点,求|MP|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>


同步练习册答案