已知点p是平面直角坐标系中第四象限内的点.那么化简: |a-b|+|b-a| 的结果是 A.-2a+2b B. 2a C. 2a-2b D. 0 查看更多

 

题目列表(包括答案和解析)

平面直角坐标系中,O为坐标原点,已知两点M(1,-3)、N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点.
(Ⅰ)求证:
OA
OB

(Ⅱ)在x轴上是否存在一点P(m,0)(m∈R),使得过P点的直线交抛物线于D、E两点,并以该弦DE为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由.

查看答案和解析>>

平面直角坐标系中,已知直线l:x=4,定点F(1,0),动点P(x,y)到直线l的距离是到定点F的距离的2倍.
(1)求动点P的轨迹C的方程;
(2)若M为轨迹C上的点,以M为圆心,MF长为半径作圆M,若过点E(-1,0)可作圆M的两条切线EA,EB(A,B为切点),求四边形EAMB面积的最大值.

查看答案和解析>>

平面直角坐标系中有两个动点A、B,他们的起始坐标分别是(0,0),(2,2),动点A,B从同一时刻开始每隔1秒钟向上、下、左、右四个方向中的一个方向移动一个单位.已知动点A向左、右移动1个单位的概率都是
1
4
,向上移动一个单位的概率是
1
3
,向下移动一个单位的概率是p; 动点B向上、下、左、右移动一个单位的概率都是q.
(1)求p和q的值.
(2)试判断最少需要几秒钟,动点A、B能同时到达点D(1,2),并求在最短时间内它们同时到达点D的概率.

查看答案和解析>>

平面直角坐标系中,已知点A(1,-2),B(4,0),P(a,1),N(a+1,1),当四边形PABN的周长最小时,过三点A、P、N的圆的圆心坐标是______.

查看答案和解析>>

平面直角坐标系中,O为坐标原点,已知两点M(1,-3)、N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点.
(Ⅰ)求证:
OA
OB

(Ⅱ)在x轴上是否存在一点P(m,0)(m∈R),使得过P点的直线交抛物线于D、E两点,并以该弦DE为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案