21.(理)如图.|AB|=2.O为AB中点.直线过B且垂直于AB.过A的动直线与交于点C.点M在线段AC上.满足=. (1)求点M的轨迹方程, (2)若过B点且斜率为- 的直线与轨迹M交于 点P.点Q(t,0)是x轴上任意一点.求当 ΔBPQ为锐角三角形时t的取值范围. 查看更多

 

题目列表(包括答案和解析)

(理)如图,|AB|=2,O为AB中点,直线过B且垂直于AB,过A的动直线与交于点C,点M在线段AC上,满足=.

   (1)求点M的轨迹方程;

   (2)若过B点且斜率为- 的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当ΔBPQ为锐角三角形时t的取值范围.

 

查看答案和解析>>

如图,几何体SABC的底面是由以AC为直径的半圆O与△ABC组成的平面图形,SO⊥平面ABC,AB⊥BC,SA=SB=SC=A C=4,BC=2.
(l)求直线SB与平面SAC所成角的正弦值;
(2)求几何体SABC的正视图中△S1A1B1的面积;
(3)试探究在圆弧AC上是否存在一点P,使得AP⊥SB,若存在,说明点P的位置并证明;若不存在,说明理由.

查看答案和解析>>

如图,已知四棱锥S—ABCD的底面是边长为4的正方形,S在底面的射影O在正方形ABCD内,且O到AB,AD的距离分别为2和1.

(1)求证:·是定值;

(2)已知P是SC的中点,且SO=3,问在棱SA上是否存在一点Q,使异面直线OP与BQ所成的角为90°?若存在,请给出证明,并求出AQ的长;若不存在,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.

(1)求证:F<0;

(2)若四边形ABCD的面积为8,对角线AC的长为2,且=0,求D2+E2-4F的值;

(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判断点O、G、H是否共线,并说明理由.

查看答案和解析>>

如图,几何体SABC的底面是由以AC为直径的半圆O与△ABC组成的平面图形,SO⊥平面ABC,AB⊥BC,SA=SB=SC=A C=4,BC=2.
(l)求直线SB与平面SAC所成角的正弦值;
(2)求几何体SABC的正视图中△S1A1B1的面积;
(3)试探究在圆弧AC上是否存在一点P,使得AP⊥SB,若存在,说明点P的位置并证明;若不存在,说明理由.

查看答案和解析>>


同步练习册答案