解:(1)设为动圆圆心.由题意知:到定直线的距离. 由抛物线的定义知.点的轨迹为抛物线.其中为焦点.为准线. ∴ 动圆的圆心的轨迹的方程为: ---------5分 (2)由题意可设直线的方程为. 由 得 或 ---------7分 且. -------------9分 由 ----------------11分 或 -------13分 又.所以直线存在.其方程为: ------14分 查看更多

 

题目列表(包括答案和解析)

已知动圆过定点(
p
2
,0)
,且与直线l:x=-
p
2
相切,其中p>0.
(Ⅰ)求动圆圆心C的轨迹方程;
(Ⅱ)设A(x0,y0)为轨迹C上一定点,经过A作直线AB、AC 分别交抛物线于B、C 两点,若 AB 和AC 的斜率之积为常数c.求证:直线 BC 经过一定点,并求出该定点的坐标.

查看答案和解析>>

(2012•江苏一模)如图,在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x-3)2+(y-4)2=1
(1)若过点C1(-1,0)的直线l被圆C2截得的弦长为
65
,求直线l的方程;
(2)设动圆C同时平分圆C1的周长、圆C2的周长.
①证明:动圆圆心C在一条定直线上运动;
②动圆C是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

已知动圆P过定点F(0,1),且与定直线y=-1相切.
(Ⅰ)求动圆圆心P的轨迹W的方程;
(Ⅱ)设过点F的直线l与轨迹W相交于A,B两点,若在直线y=-1上存在点C,使△ABC为正三角形,求直线l的方程.

查看答案和解析>>

设过定点F(0,1)与直线l1:y=-1相切的动圆圆心M的轨迹为G.
(1)求轨迹G的方程;
(2)过点F的直线l2交轨迹G于不同的两点P、Q,交直线l1于点R,求
RP
RQ
的最小值.

查看答案和解析>>

已知动圆P与两圆(x+2)2+y2=2,(x-2)2+y2=2中的一个内切,另一个外切.
(1)求动圆圆心P的轨迹E的方程;
(2)过(2,0)作直线l交曲线E于A、B两点,使得|AB|=2
2
,求直线l的方程;
(3)若从动点P向圆C:x2+(y-4)2=1作两条切线,切点为A、B,设|PC|=t,试用t表示
PA
PB
,并求
PA
PB
的取值范围.

查看答案和解析>>


同步练习册答案