1. 如果是二元一次方程.则m.n的值分别为 A.2.3 B.2.1 C.1.2 D.3.4 查看更多

 

题目列表(包括答案和解析)

如果5x3m-2n-2yn-m+11=0是二元一次方程,则m、n的值分别为  
[     ]
A.m=11,n=2    
B.m=2,n=1
C.m=-1,n=2    
D.m=3,n=4

查看答案和解析>>

阅读下列材料,并解答问题:
在一元二次方程ax2+bx+c=0(a≠0)中,如果b2-4ac≥0时,那
么它的两个根是x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a
所以x1+x2=
(-b+
b2-4ac
)+(-b-
b2-4ac
)
2a
=
-2b
2a
=-
b
a
x1x2=
(-b+
b2-4ac
)•(-b-
b2-4ac
)
2a•2a
=
b2-(b2-4ac)
4a2
=
c
a

由此可见,一元二次方程的两根的和、两根的积是由一元二次方程的系数a、b、c确定的.运用上述关系解答下列问题:
(1)已知一元二次方程2x2-6x-1=0的两个根分别为x1、x2,则x1+x2=
3
3
,x1x2=
-
1
2
-
1
2
1
x1
+
1
x2
=
-6
-6

(2)已知x1、x2是关于x的方程x2-x+a=0的两个实数根,且
x
2
1
+
x
2
2
=7
,求a的值.

查看答案和解析>>

阅读下列材料,并解答问题:
在一元二次方程ax2+bx+c=0(a≠0)中,如果b2-4ac≥0时,那
么它的两个根是x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a
所以x1+x2=
(-b+
b2-4ac
)+(-b-
b2-4ac
)
2a
=
-2b
2a
=-
b
a
x1x2=
(-b+
b2-4ac
)•(-b-
b2-4ac
)
2a•2a
=
b2-(b2-4ac)
4a2
=
c
a

由此可见,一元二次方程的两根的和、两根的积是由一元二次方程的系数a、b、c确定的.运用上述关系解答下列问题:
(1)已知一元二次方程2x2-6x-1=0的两个根分别为x1、x2,则x1+x2=______,x1x2=______,
1
x1
+
1
x2
=______.
(2)已知x1、x2是关于x的方程x2-x+a=0的两个实数根,且
x21
+
x22
=7
,求a的值.

查看答案和解析>>

阅读材料:在一元二次方程ax2+bx+c=0(a≠0)中,如果b2-4ac≥0,记它的两个根为x1,x2,由求根公式计算两个根的和与积为x1+x2=-数学公式,x1•x2=数学公式,一元二次方程两个根的和、两个根的积是由方程的系数确定的,这就是一元二次方程根与系数的关系.根据这段材料解决下列问题:
(1)设方程2x2-4x-1=0的两个根分别为x1,x2,则x1+x2=______,x1•x2=______.
(2)如果方程x2+bx-1=0的一个根是2+数学公式,求方程的另一个根和实数b的值.

查看答案和解析>>

阅读材料:在一元二次方程ax2+bx+c=0(a≠0)中,如果b2-4ac≥0,记它的两个根为x1,x2,由求根公式计算两个根的和与积为x1+x2=-
b
a
,x1•x2=
c
a
,一元二次方程两个根的和、两个根的积是由方程的系数确定的,这就是一元二次方程根与系数的关系.根据这段材料解决下列问题:
(1)设方程2x2-4x-1=0的两个根分别为x1,x2,则x1+x2=
2
2
,x1•x2=
-
1
2
-
1
2

(2)如果方程x2+bx-1=0的一个根是2+
3
,求方程的另一个根和实数b的值.

查看答案和解析>>


同步练习册答案