[解析]记.则. 查看更多

 

题目列表(包括答案和解析)

【2012高考江苏26】(10分)设集合.记为同时满足下列条件的集合的个数:

;②若,则;③若,则

(1)求

(2)求的解析式(用表示).

查看答案和解析>>

某市投资甲、乙两个工厂,2011年两工厂的产量均为100万吨,在今后的若干年内,甲工厂的年产量每年比上一年增加10万吨,乙工厂第年比上一年增加万吨,记2011年为第一年,甲、乙两工厂第年的年产量分别为万吨和万吨.

(Ⅰ)求数列的通项公式;

(Ⅱ)若某工厂年产量超过另一工厂年产量的2倍,则将另一工厂兼并,问到哪一年底,其中哪一个工厂被另一个工厂兼并.

【解析】本试题主要考查数列的通项公式的运用。

第一问由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98

第二问,考查等差数列与等比数列的综合,考查用数列解决实际问题,其步骤是建立数列模型,进行计算得出结果,再反馈到实际中去解决问题.由于比较两个工厂的产量时两个函数的形式较特殊,不易求解,故采取了列举法,数据列举时作表格比较简捷.

解:(Ⅰ)由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分

(Ⅱ)由于n,各年的产量如下表 

n       1     2    3      4     5     6     7     8    

an      100   110   120   130   140   150  160   170

bn      100   102    106  114   130   162   226   354

2015年底甲工厂将被乙工厂兼并

 

查看答案和解析>>

一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.

(I)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为.求关于的一元二次方程有实根的概率;

(II)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n.若以 作为点P的坐标,求点P落在区域内的概率.

【解析】第一问利用古典概型概率求解所有的基本事件数共12种,然后利用方程有实根,则满足△=4a2-4b2≥0,即a2≥b2。,这样求得事件发生的基本事件数为6种,从而得到概率。第二问中,利用所有的基本事件数为16种。即基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16种。在求解满足的基本事件数为(1,1) (2,1)  (2,2) (3,1) 共4种,结合古典概型求解得到概率。

(1)基本事件(a,b)有:(1,2)   (1,3)  (1,4)   (2,1)   (2,3)   (2,4)   (3,1)   (3,2)  (3,4)   (4,1)   (4,2)   (4,3)共12种。

有实根, ∴△=4a2-4b2≥0,即a2≥b2

记“有实根”为事件A,则A包含的事件有:(2,1)   (3,1)   (3,2)  (4,1)   (4,2)   (4,3) 共6种。

∴PA.= 。   …………………6分

(2)基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16种。

记“点P落在区域内”为事件B,则B包含的事件有:

(1,1) (2,1)  (2,2) (3,1) 共4种。∴PB.=

 

查看答案和解析>>

某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻(时) 的关系为,其中是与气象有关的参数,且

(1)令, ,写出该函数的单调区间,并选择其中一种情形进行证明;

(2)若用每天的最大值作为当天的综合放射性污染指数,并记作,求

(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?

【解析】第一问利用定义法求证单调性,并判定结论。

第二问(2)由函数的单调性知

,即t的取值范围是. 

时,记

 

上单调递减,在上单调递增,

第三问因为当且仅当时,.

故当时不超标,当时超标.

 

查看答案和解析>>

改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村年十年间每年考入大学的人数.为方便计算,年编号为年编号为,…,年编号为.数据如下:

年份(

10

人数(

11

13

14

17

22

30

31

(1)从这年中随机抽取两年,求考入大学的人数至少有年多于人的概率;

(2)根据前年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值和实际值之间的差的绝对值。

 

【解析】(1)设考入大学人数至少有1年多于15人的事件为A则P(A)=1-=      (4’)

(2)由已知数据得=3,=8,=3+10+24+44+65=146=1+4+9+16+25=55(7’)

=,                   (9’)

 则回归直线方程为y=2.6x+0.2                           (10’)

则第8年的估计值和真实值之间的差的绝对值为

 

查看答案和解析>>


同步练习册答案