题目列表(包括答案和解析)
设函数
,若
为函数
的一个极值点,则下列图象不可能为
的图象是
![]()
【答案】D
【解析】设
,∴
,
又∴
为
的一个极值点,
∴
,即
,
∴
,
当
时,
,即对称轴所在直线方程为
;
当
时,
,即对称轴所在直线方程应大于1或小于-1.
如图,直线
与抛物线
交于
两点,与
轴相交于点
,且
.
(1)求证:
点的坐标为
;
(2)求证:
;
(3)求
的面积的最小值.
![]()
【解析】设出点M的坐标
,并把过点M的方程设出来.为避免对斜率不存在的情况进行讨论,可以设其方程为
,然后与抛物线方程联立消x,根据
,即可建立关于
的方程.求出
的值.
(2)在第(1)问的基础上,证明:
即可.
(3)先建立面积S关于m的函数关系式,根据
建立即可,然后再考虑利用函数求最值的方法求最值.
【答案】![]()
【解析】设
,有几何意义知
的最小值为
, 又因为存在实数x满足
,所以只要2大于等于f(x)的最小值即可.即
2,解得:
∈
,所以a的取值范围是
.故答案为:
.
设抛物线
:
(
>0)的焦点为
,准线为
,
为
上一点,已知以
为圆心,
为半径的圆
交
于
,
两点.
(Ⅰ)若
,
的面积为
,求
的值及圆
的方程;
(Ⅱ)若
,
,
三点在同一条直线
上,直线
与
平行,且
与
只有一个公共点,求坐标原点到
,
距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
【解析】设准线
于
轴的焦点为E,圆F的半径为
,
![]()
则|FE|=
,
=
,E是BD的中点,
(Ⅰ) ∵
,∴
=
,|BD|=
,
设A(
,
),根据抛物线定义得,|FA|=
,
∵
的面积为
,∴
=
=
=
,解得
=2,
∴F(0,1), FA|=
, ∴圆F的方程为:
;
(Ⅱ) 解析1∵
,
,
三点在同一条直线
上, ∴
是圆
的直径,
,
由抛物线定义知
,∴
,∴
的斜率为
或-
,
∴直线
的方程为:
,∴原点到直线
的距离
=
,
设直线
的方程为:
,代入
得,
,
∵
与
只有一个公共点,
∴
=
,∴
,
∴直线
的方程为:
,∴原点到直线
的距离
=
,
∴坐标原点到
,
距离的比值为3.
解析2由对称性设
,则![]()
点
关于点
对称得:![]()
得:
,直线![]()
切点![]()
直线![]()
坐标原点到
距离的比值为![]()
已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是
(A)(1-
,2) (B)(0,2)
(C)(
-1,2) (D)(0,1+
)
【解析】 做出三角形的区域如图
,由图象可知当直线
经过点B时,截距最大,此时
,当直线经过点C时,直线截距最小.因为
轴,所以
,三角形的边长为2,设
,则
,解得
,
,因为顶点C在第一象限,所以
,即
代入直线
得
,所以
的取值范围是
,选A.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com