[解析]设△OAB的边长为.则不妨设.代入.得,同理.设△OCD的边长为.可得... 查看更多

 

题目列表(包括答案和解析)

 设函数,若为函数的一个极值点,则下列图象不可能为的图象是

【答案】D

【解析】设,∴

又∴的一个极值点,

,即

时,,即对称轴所在直线方程为

时,,即对称轴所在直线方程应大于1或小于-1.

 

查看答案和解析>>

如图,直线与抛物线交于两点,与轴相交于点,且.

(1)求证:点的坐标为

(2)求证:

(3)求的面积的最小值.

【解析】设出点M的坐标,并把过点M的方程设出来.为避免对斜率不存在的情况进行讨论,可以设其方程为,然后与抛物线方程联立消x,根据,即可建立关于的方程.求出的值.

(2)在第(1)问的基础上,证明:即可.

(3)先建立面积S关于m的函数关系式,根据建立即可,然后再考虑利用函数求最值的方法求最值.

 

查看答案和解析>>

【答案】

【解析】设,有几何意义知的最小值为, 又因为存在实数x满足,所以只要2大于等于f(x)的最小值即可.即2,解得:,所以a的取值范围是.故答案为:

查看答案和解析>>

设抛物线>0)的焦点为,准线为上一点,已知以为圆心,为半径的圆,两点.

(Ⅰ)若,的面积为,求的值及圆的方程;

 (Ⅱ)若三点在同一条直线上,直线平行,且只有一个公共点,求坐标原点到距离的比值.

【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.

【解析】设准线轴的焦点为E,圆F的半径为

则|FE|==,E是BD的中点,

(Ⅰ) ∵,∴=,|BD|=

设A(),根据抛物线定义得,|FA|=

的面积为,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圆F的方程为:

(Ⅱ) 解析1∵三点在同一条直线上, ∴是圆的直径,,

由抛物线定义知,∴,∴的斜率为或-

∴直线的方程为:,∴原点到直线的距离=

设直线的方程为:,代入得,

只有一个公共点, ∴=,∴

∴直线的方程为:,∴原点到直线的距离=

∴坐标原点到距离的比值为3.

解析2由对称性设,则

      点关于点对称得:

     得:,直线

     切点

     直线

坐标原点到距离的比值为

 

查看答案和解析>>

已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是

(A)(1-,2)     (B)(0,2)     (C)(-1,2)   (D)(0,1+)

【解析】    做出三角形的区域如图,由图象可知当直线经过点B时,截距最大,此时,当直线经过点C时,直线截距最小.因为轴,所以,三角形的边长为2,设,则,解得,因为顶点C在第一象限,所以,即代入直线,所以的取值范围是,选A.

 

查看答案和解析>>


同步练习册答案