(1)由知.在R上单调递增.恒成立.且.即且., 当.即时..时.时..即当时.能使在R上单调递增.∴. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

已知函数f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函数f(x)在R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使不等式f(x)≥2x-3对一切实数x∈R恒成立?若存在,求出a的取值范围,若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=2x-m(m∈R),g(x)=ax2+
12
ax+1
(a∈R),h(x)=2|x-a|
(Ⅰ)设A:存在实数x使得f(x)≤0(m∈R)成立;B:当a=-2时,不等式g(x)>0有解.若“A”是“B”的必要不充分条件,求实数m的取值范围;
(Ⅱ)设C:函数y=h(x)在区间(4,+∞)上单调递增;D:?x∈R,不等式g(x)>0恒成立.请问,是否存在实数a使“非C”为真命题且“C∨D”也为真命题?若存在,请求实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=2x-m(m∈R),g(x)=ax2+
1
2
ax+1
(a∈R),h(x)=2|x-a|
(Ⅰ)设A:存在实数x使得f(x)≤0(m∈R)成立;B:当a=-2时,不等式g(x)>0有解.若“A”是“B”的必要不充分条件,求实数m的取值范围;
(Ⅱ)设C:函数y=h(x)在区间(4,+∞)上单调递增;D:?x∈R,不等式g(x)>0恒成立.请问,是否存在实数a使“非C”为真命题且“C∨D”也为真命题?若存在,请求实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=4x+ax2-
2
3
x3(x∈R)

(1)若a=1,求函数f(x)的单调区间;
(2)若函数f(x)在区间[-1,1]上单调递增,求实数a的取值组成的集合A;
(3)设关于x的方程f(x)=2x+
1
3
x3
的两个非零实根为x1,x2,试问是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案