又∵. 我们只要证明方程在内有解即可. 查看更多

 

题目列表(包括答案和解析)

要证:a2+b2-1-a2b2≤0,只要证明(  )
A、2ab-1-a2b2≤0
B、a2+b2-1-
a4+b4
2
≤0
C、
a+b2
2
-1-a2b2≤0
D、(a2-1)(b2-1)≥0

查看答案和解析>>

若数列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).请按照要求完成下列各题,并将答案填在答题纸的指定位置上.
(1)可考虑利用算法来求am,bm的值,其中m为给定的数据(m≥2,m∈N).右图算法中,虚线框中所缺的流程,可以为下面A、B、C、D中的
ACD
ACD

(请填出全部答案)
A、B、
C、D、

(2)我们可证明当a≠b,5a≠4b时,{an-bn}及{5an-4bn}均为等比数列,请按答纸题要求,完成一个问题证明,并填空.
证明:{an-bn}是等比数列,过程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0为首项,以
3
3
为公比的等比数列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0为首项,以
2
2
为公比的等比数列
(3)若将an,bn写成列向量形式,则存在矩阵A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,请回答下面问题:
①写出矩阵A=
-24
-57
-24
-57
;  ②若矩阵Bn=A+A2+A3+…+An,矩阵Cn=PBnQ,其中矩阵Cn只有一个元素,且该元素为Bn中所有元素的和,请写出满足要求的一组P,Q:
P=
1 
1 
Q=
1
1
P=
1 
1 
Q=
1
1
; ③矩阵Cn中的唯一元素是
2n+2-4
2n+2-4

计算过程如下:

查看答案和解析>>

看下面的问题:1+2+3+…+(  )>10 000这个问题的答案虽然不唯一,但是我们只要确定出满足条件的最小正整数n0,括号内填写的数字只要大于或等于n0即可.试写出寻找满足条件的最小正整数n0的算法并画出相应的程序框图.

查看答案和解析>>

(2012•虹口区一模)已知Sn是数列{an}的前n项和,2Sn=Sn-1-(
1
2
)n-1+2
(n≥2,n∈N*),且a1=
1
2

(1)求a2的值,并写出an和an+1的关系式;
(2)求数列{an}的通项公式及Sn的表达式;
(3)我们可以证明:若数列{bn}有上界(即存在常数A,使得bn<A对一切n∈N*恒成立)且单调递增;或数列{bn}有下界(即存在常数B,使得bn>B对一切n∈N*恒成立)且单调递减,则
lim
n→∞
bn
存在.直接利用上述结论,证明:
lim
n→∞
Sn
存在.

查看答案和解析>>

我们可以证明:已知sinθ=t(|t|≤1),则sin
θ
2
至多有4个不同的值.
(1)当t=
3
2
时,写出sin
θ
2
的所有可能值;
(2)设实数t由等式log
1
2
2
(t+1)+a•log
1
2
(t+1)+b=0
确定,若sin
θ
2
总共有7个不同的值,求常数a、b的取值情况.

查看答案和解析>>


同步练习册答案