所以.因此满足条件的的取值范围是. 查看更多

 

题目列表(包括答案和解析)

(2010•南京三模)在直角坐标系xOy中,椭圆
x2
9
+
y2
4
=1
的左、右焦点分别为F1、F2,点A为椭圆的左顶点,椭圆上的点P在第一象限,PF1⊥PF2,⊙O的方程为x2+y2=4
(1)求点P坐标,并判断直线PF2与⊙O的位置关系;
(2)是否存在不同于点A的定点B,对于⊙O上任意一点M,都有
MB
MA
为常数,若存在,求所以满足条件的点B的坐标;若不存在,说明理由.

查看答案和解析>>

若函数具有性质:①为偶函数,②对任意都有,所以则函数的解析式可以是:(只需写出满足条件的一个解析式即可)

 

查看答案和解析>>

((本小题共13分)

若数列满足,数列数列,记=.

(Ⅰ)写出一个满足,且〉0的数列

(Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011;

(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列,使得=0?如果存在,写出一个满足条件的E数列;如果不存在,说明理由。

【解析】:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5

(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5

(Ⅱ)必要性:因为E数列A5是递增数列,所以.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因为a1=12,a2000=2011,所以a2000=a1+1999.故是递增数列.综上,结论得证。

 

 

查看答案和解析>>

,则下列不等式对于一切满足条件的恒成立的是___________(写出所以正确命题的编号)

;②;③;④.

 

查看答案和解析>>

已知数列是首项为的等比数列,且满足.

(1)   求常数的值和数列的通项公式;

(2)   若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;

(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.

【解析】第一问中解:由,,

又因为存在常数p使得数列为等比数列,

,所以p=1

故数列为首项是2,公比为2的等比数列,即.

此时也满足,则所求常数的值为1且

第二问中,解:由等比数列的性质得:

(i)当时,

(ii) 当时,

所以

第三问假设存在正整数n满足条件,则

则(i)当时,

 

查看答案和解析>>


同步练习册答案