题目列表(包括答案和解析)
设函数f(x)定义在(0,+∞)上,f(1)=0,导函数![]()
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与
的大小关系;
(Ⅲ)是否存在x0>0,使得|g(x)-g(x0)|<
对任意成立?若存在,求出x0的取值范围;若不存在,请说明理由.
已知函数![]()
(1)若
在
上为单调减函数,求实数
取值范围;
已知函数
,曲线
在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
,若
时,
有极值.
(I) 求a、b、c的值;
(II) 求
在[-3,1]上的最大值和最小值.
已知函数f(x)=-x3+3x2+9x+a.
(1)求f(x)的单调递减区间;
(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
思路 本题考查多项式的导数公式及运用导数求函数的单调区间和函数的最值,题目中需注意应先比较f(2)和f(-2)的大小,然后判定哪个是最大值从而求出a.
已知函数f(x)=x2-mlnx
(1)若函数f(x)在(,+∞)上是递增的,求实数m的取值范围;
(2)当m=2时,求函数f(x)在[1,e]上的最大值和最小值
一、选择题:
1.B 2.D 3.A 4.A 5.A 6.B 7.B 8.B 9.C 10.C
二、填空题:
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.1)、5)
21.
22.
23.3)4) 24.3
三、解答题:
25解:(Ⅰ)
……2分
.
的最小正周期是
.
(Ⅱ) ∵
,
∴
.
∴当
即
时,函数
取得最小值是
.
∵
,
∴
.
26解:(1)∵
,∴
,即
.
∴
.
由
,得
或
;
由
,得
.因此,
函数
的单调增区间为
,
;单调减区间为
.
在
取得极大值为
;
在
取得极小值为
.
由∵
,
且.files/image341.gif)
.files/image343.gif)
∴
在[-
,1]上的的最大值为
,最小值为
.
(2) ∵
,∴
.
∵函数
的图象上有与
轴平行的切线,∴
有实数解.
∴
,∴
,即
.
因此,所求实数
的取值范围是
.
27解:(1)在
中,
,.files/image366.gif)
而PD垂直底面ABCD,.files/image368.gif)
,
在
中,
,即
为以
为直角的直角三角形。
设点
到面
的距离为
,
由
有
,
即
,
;
(2)
,而
,
即
,
,
,
是直角三角形;
(3)
时
,
,
即
,
的面积.files/image414.gif)
28解:(I)因为,
成立,所以:
,
由:
,得
,
由:
,得
.files/image426.gif)
解之得:
从而,函数解析式为:
(2)由于,
,设:任意两数
是函数
图像上两点的横坐标,则这两点的切线的斜率分别是:
又因为:
,所以,
,得:
知:
故,当
是函数
图像上任意两点的切线不可能垂直
29解:(1)∵
∴.files/image451.gif)
两式相减得:
∴
又
时,
∴
∴
是首项为
,公比为
的等比数列
∴
(2)
以上各式相加得:
30解:(1).files/image478.gif)
(2)由
由
.files/image486.gif)
.files/image490.gif)
,
.files/image498.gif)
由此得.files/image500.gif)
.files/image502.gif)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com