对于一切实数x.令[x]为不大于x的最大整数.则函数称为高斯函数或取整函数.若为数列的前n项和.则= . 查看更多

 

题目列表(包括答案和解析)

对于一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]为高斯实数或取实数,若an=f(
n
3
),n∈N*
,Sn为数列{an}的前n项和,则S3n=
3n2-n
2
3n2-n
2

查看答案和解析>>

对于一切实数x,令[x]为不大于x的最大整数,例如:[3.05]=3,[
5
3
]=1
,则函数f(x)=[x]称为高斯函数或取整函数,若an=f(
n
3
)(n∈N*)
,Sn为数列{an}的前n项和,则S30=
145
145

查看答案和解析>>

对于一切实数x,令[x]为不大于x的最大整数,则函数(fx)=[x]称为高斯函数或取整函数.

计算f(-0.3)+f(1)+f(1.3)=____________;

若an=f(),n∈N*,Sn为数列{an}的前n项和,则S30=____________.

查看答案和解析>>

对于一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]为高斯实数或取实数,若an=f(
n
3
),n∈N*
,Sn为数列{an}的前n项和,则S3n=______.

查看答案和解析>>

对于一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]称为高斯函数或取整函数,计算f(-0.3)+f(1)+f(1.3)=__________________;若an=f(),n∈N*,Sn为数列{an}的前n项和,则S4n=________________.

查看答案和解析>>

一、选择题:DDBD   CCBA

二、填空题:9、  10、-2    11、1    12、11   

13、解析:    14、

15、解:(Ⅰ)时,f(x)>1

令x=-1,y=0则f(-1)=f(-1)f(0)∵f(-1)>1

∴f(0)=1

若x>0,则f(x-x)=f(0)=f(x)f(-x)故

故x∈R   f(x)>0

任取x1<x2   

故f(x)在R上减函数

(Ⅱ)①  由f(x)单调性

 an+1=an+2  故{an}等差数列    

   是递增数列

 当n≥2时,

 

而a>1,∴x>1

故x的取值范围(1,+∞)

16、解:(I)

(舍去)

单调递增;

单调递减. 

上的极大值 

   (II)由

, …………① 

依题意知上恒成立,

 上单增,要使不等式①成立,

当且仅当 

   (III)由

上递增;

上递减 

恰有两个不同实根等价于

        

17、解:(Ⅰ)由题可得

所以曲线在点处的切线方程是:

,得.即.显然,∴

(Ⅱ)由,知,同理

   故

从而,即.所以,数列成等比数列.

.即

从而所以

(Ⅲ)由(Ⅱ)知

时,显然

时,

   综上,

18、解:(I)

(舍去)

单调递增;

单调递减.  

上的极大值  

   (II)由

, …………①  

依题意知上恒成立,

 上单增,要使不等式①成立,

当且仅当

   (III)由

上递增;

上递减  

恰有两个不同实根等价于

  

 


同步练习册答案