已知函数,数列{}满足:证明: (I).; (II)..证明: (I).先用数学归纳法证明.n=1,2,3,- (i).当n=1时,由已知显然结论成立. (ii).假设当n=k时结论成立,即.因为0<x<1时,所以f上是增函数. 又f(x)在[0,1]上连续,从而.故n=k+1时,结论成立.由可知.对一切正整数都成立.又因为时..所以.综上所述.知.当时.. 从而所以g 上是增函数. 又g (x)在[0,1]上连续,且g (0)=0, 所以当时.g (x)>0成立.于是. 故. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

.(本小题满分14分)已知函数.(1) 试证函数的图象关于点对称;(2) 若数列的通项公式为, 求数列的前m项和(3) 设数列满足: , . 设.

若(2)中的满足对任意不小于2的正整数n, 恒成立, 试求m的最大值.

查看答案和解析>>

(本小题满分14分)已知函数有下列性质:“若

,使得”成立。

   (1)利用这个性质证明唯一;

   (2)设A、B、C是函数图象上三个不同的点,试判断△ABC的形状,并说明理由。

查看答案和解析>>

(本小题满分14分)

已知函数的反函数为,数列满足:,函数的图象在点处的切线在轴上的截距为.(Ⅰ)求数列{}的通项公式;

(Ⅱ)若数列的项仅最小,求的取值范围;

(Ⅲ)令函数,数列满足:,且,其中.证明:

查看答案和解析>>

. (本小题满分14分)已知函数.

(Ⅰ)求函数的极值点;(Ⅱ)若函数上有零点,求的最大值;(Ⅲ)证明:当时,有成立;若),试问数列中是否存在?若存在,求出所有相等的两项;若不存在,请说明理由.(为自然对数的底数)

查看答案和解析>>


同步练习册答案