(II)解:由 ------------4分 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图,在边长为4的菱形中,.点分别在边上,点与点不重合,.沿翻折到的位置,使平面⊥平面

(1)求证:⊥平面

(2)当取得最小值时,请解答以下问题:

(i)求四棱锥的体积;

(ii)若点满足= (),试探究:直线与平面所成角的大小是否一定大于?并说明理由.

 

查看答案和解析>>

如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求证:BD⊥平面POA;
(Ⅱ)当PB取得最小值时,请解答以下问题:
(i)求四棱锥P-BDEF的体积;
(ii)若点Q满足 (λ>0),试探究:直线OQ与平面PBD所成角的大小是否一定大于?并说明理由.

查看答案和解析>>

 

为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.

(I)第二小组的频率是多少?样本容量是多少?

(II)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?

(III)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(2012•福州模拟)如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求证:BD⊥平面POA;
(Ⅱ)当PB取得最小值时,请解答以下问题:
(i)求四棱锥P-BDEF的体积;
(ii)若点Q满足
AQ
QP
 (λ>0),试探究:直线OQ与平面PBD所成角的大小是否一定大于
π
4
?并说明理由.

查看答案和解析>>

为适应新课改,切实减轻学生负担,提高学生综合素质,某地区抽取了高三年级文科生300人在数学选修1-1、1-2、4-1选课方面进行改革,由学生从三册中自由选择1册(不可多选,也不可不选)进行选修,选课情况如下表:
1-11-24-1
男生75a40
女生b5030
(I)为了解学生情况,现采用分层抽样方法从这300人中抽取了30人,若统计发现选择1-2有10人,试根据这一数据求出a,b的值;
(II)因某种原因,要求48≤a≤56,计算a>b的概率.

查看答案和解析>>


同步练习册答案