题目列表(包括答案和解析)
(本小题满分14分)
已知等差数列{
}的公差为d(d
0),等比数列{
}的公比为q(q>1)。设
=
+
…..+
,
=
-
+…..+(-1
,n![]()
(1)若
=
= 1,d=2,q=3,求
的值;
(2)若
=1,证明(1-q)
-(1+q)
=
,n![]()
;
(3)若正数n满足2
n
q,设
的两个不同的排列,
,
证明
。
(本小题满分14分)已知递增数列
满足:
,
,且
、
、
成等比数列。(I)求数列
的通项公式
;(II)若数列
满足:
,且
。①证明数列
是等比数列,并求数列
的通项公式
;②设
,数列
前
项和为
,
,
。当
时,试比较A与B的大小。
(本小题满分14分)
已知等比数列
的前
项和为![]()
(Ⅰ)求数列
的通项公式;
(Ⅱ)设数列
满足
,
为数列
的前
项和,试比较
与
的大小,并证明你的结论.
(本小题满分14分)已知等比数列
的前
项和为![]()
(Ⅰ)求数列
的通项公式;
(Ⅱ)设数列
满足
,
为数列
的前
项和,试比较
与
的大小,并证明你的结论.
(本小题满分14分)已知
的首项为a1,公比q为正数(q≠1)的等比数列,其前n项和为Sn,且
. (1)求q的值; (2)设
,请判断数列
能否为等比数列,若能,请求出a1的值,否则请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com