题目列表(包括答案和解析)
(12分)已知函数
在
处取得极值2.
(1)求函数
的表达式;
(2)当
满足什么条件时,函数
在区间
上单调递增?
(本题12分)某地区上年度电价为
元/kW•h,年用电量为
kW•h.本年度计划将电价降低到0.55元/ kW•h到0.75元/ kW•h之间,而用户期望电价为0.40元/ kW•h.经测算,下调电价后新增用电量与实际电价与用户的期望电价的差成反比(比例系数为
),该地区电力的成本价为0.30元/ kW•h.
(1)写出本年度电价下调后,电力部门的收益
与实际电价
之间的函数关系式;
(2)设
=
,当电价最低定为多少时仍可保证电力部门的收益比上一年至少增长20%?(注:收益=实际电量×(实际电价
本价))
(本小题满分12分)(1)在一个红绿灯路口,红灯、黄灯和绿灯的时间分别为30秒、5秒和40秒。当你到达路口时,求不是红灯的概率。(2)已知关于x的一元二次函数
设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
和
,求函数
在区间[
上是增函数的概率。
(本小题满分12分)
(1)在一个红绿灯路口,红灯、黄灯和绿灯的时间分别为30秒、5秒和40秒。当你到达路口时,求不是红灯的概率。
(2)已知关于x的一元二次函数
设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
和
,求函数
在区间[
上是增函数的概率。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com