题目列表(包括答案和解析)
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。
已知函数
的反函数。定义:若对给定的实数
,函数
与
互为反函数,则称
满足“
和性质”;若函数
与
互为反函数,则称
满足“
积性质”。
(1) 判断函数
是否满足“1和性质”,并说明理由;
![]()
(2) 求所有满足“2和性质”的一次函数;
(3) 设函数
对任何
,满足“
积性质”。求
的表达式。
(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,
第3小题满分7分.
已知双曲线
.
(1)求双曲线
的渐近线方程;
(2)已知点
的坐标为
.设
是双曲线
上的点,
是点
关于原点的对称点.
记
.求
的取值范围;
(3)已知点
的坐标分别为
,
为双曲线
上在第一象限内的点.记
为经过原点与点
的直线,
为
截直线
所得线段的长.试将
表示为直线
的斜率
的函数.
(本题满分16分)本题共有3个小题
,第1小题满分4分,第2小题满分6分、第3小题满分6分.
设
,常数
,定义运算“
”:
,定义运算“
”:
;对于两点
、
,定义
.
(1)若
,求动点
的轨迹
;
(2)已知直线
与(1)中轨迹
交于
、
两点,若
,试求![]()
的值;
(3)在(2)中条件下,若直线
不过原点且与
轴交于点S,与
轴交于点T,并且与(1)中轨迹
交于不同两点P、Q , 试求
的取值范围.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知函数
的反函数.定义:若对给定的实数
,函数
与
互为反函数,则称
满足“
和性质”;若函数
与
互为反函数,则称
满足“
积性质”.
(1) 判断函数
是否满足“1和性质”,并说明理由;
(2) 求所有满足“2和性质”的一次函数;
(3) 设函数
对任何
,满足“
积性质”.求
的表达式.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分。
已知双曲线C的中心是原点,右焦点为F
,一条渐近线m:
,设过点A
的直线l的方向向量
。
(1)求双曲线C的方程;
(2)若过原点的直线
,且a与l的距离为
,求K的值;
(3)证明:当
时,在双曲线C的右支上不存在点Q,使之到直线l的距离为
。
一. 填空题(每题4分,共48分)
1. {0}; 2. 四; 3. 12; 4. 0; 5. 4; 6. 理
、文7; 7. 理
; 12.
(或
).
二.选择题(每题4分,共16分)
13.D; 14.B; 15.C; 16.理B、文B.
三. 解答题. 17.(本题满分12分)解:由已知得
(3分)
∴
, ∴
(6分)
∴
又
,即
,∴
(9分)
∴
的面积S=
.
(12分)
18.(本题满分12分)解:∵
,∴
(5分)
∵
,欲使
是纯虚数,
而
=
(7分)
∴
, 即
(11分)
∴当
时,
是纯虚数.
(12分)
19.(本题满分14分,第1小题满分9分,第2小题满分5分)
解:(1)依题意设
,则
,
(2分)
(4分) 而
,
∴
,即
, (6分) ∴
(7分)
从而
.
(9分)
(2)
平面
,
∴直线
到平面
的距离即点
到平面
的距离
(2分)
也就是
的斜边
上的高,为
.
(5分)
20.(本题满分14分,第1小题满分8分,第2小题满分6分)
解:(1)不正确.
(2分)
没有考虑到
还可以小于
.
(3分)
正确解答如下:
令
,则
,
当
时,
,即
(5分)
当
时,
,即
(7分)
∴
或
,即
既无最大值,也无最小值.
(8分)
(2)(理)对于函数
,令
①当
时,
有最小值,
,
(9分)
当
时,
,即
,当
时,即
∴
或
,即
既无最大值,也无最小值.
(10分)
②当
时,
有最小值,
,
此时,
,∴
,即
,
既无最大值,也无最小值 .(11分)
③当
时,
有最小值,
,即
(12分)
∴
,即
,
∴当
时,
有最大值
,没有最小值.
(13分)
∴当
时,
既无最大值,也无最小值。
当
时,
有最大值
,此时
;没有最小值.
(14分)
(文)∵
, ∴
(12分)
∴函数
的最大值为
(当
时)而无最小值. (14分)
21.(本满分16分,第1、2小题满分各4分,第3小题满分8分)
解:(1)
(4分)
(2)由
解得
(7分)
所以第
个月更换刀具.
(8分)
(3)第
个月产生的利润是:
(9分)
个月的总利润:
(11分)
个月的平均利润:
(13分)
由
且
在第7个月更换刀具,可使这7个月的平均利润
最大(13.21万元) (14分)此时刀具厚度为
(mm)
(16分)
22.(本题满分18分,第1、2小题满分各4分,第3小题满分10分)
解:(1)
(4分)
(2)各点的横坐标为:
(8分)
(3)过
作斜率为
的直线
交抛物线于另一点
,
(9分)
则一般性的结论可以是:
点
的相邻横坐标之和构成以
为首项和公比的等比数列(或:点
无限趋向于某一定点,且其横(纵)坐标之差成等比数列;或:
无限趋向于某一定点,且其横(纵)坐标之差成等比数列,等)(12分)
证明:设过点
作斜率为
的直线交抛物线于点
由
得
或
;
点
的横坐标为
,则
(14分)
于是
两式相减得:
(16分)


=

故点
无限逼近于点
同理
无限逼近于点
(18分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com