题目列表(包括答案和解析)
在
中,已知
,面积
,
(1)求
的三边的长;
(2)设
是
(含边界)内的一点,
到三边
的距离分别是![]()
①写出
所满足的等量关系;
②利用线性规划相关知识求出
的取值范围.
【解析】第一问中利用设
中角
所对边分别为![]()
由
得![]()
![]()
又由
得
即
![]()
又由
得
即
![]()
又
又
得![]()
即
的三边长![]()
![]()
第二问中,①
得
![]()
故![]()
②![]()
令
依题意有![]()
作图,然后结合区域得到最值。
![]()
函数
的反函数为
(A)
(B)
(C)
(D)![]()
【解析】 因为
所以
.由
得,
,所以
,所以反函数为
,选A.
如图,在直三棱柱
中,底面
为等腰直角三角形,
,
为棱
上一点,且平面
平面
.
(Ⅰ)求证:
点为棱
的中点;
(Ⅱ)判断四棱锥
和
的体积是否相等,并证明。
![]()
【解析】本试题主要考查了立体几何中的体积问题的运用。第一问中,
易知
,
面
。由此知:
从而有
又点
是
的中点,所以
,所以
点为棱
的中点.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D为BB1中点,可以得证。
(1)过点
作
于
点,取
的中点
,连
。
面
面
且相交于
,面
内的直线
,
面
。……3分
又
面
面
且相交于
,且
为等腰三角形,易知
,
面
。由此知:
,从而有
共面,又易知
面
,故有
从而有
又点
是
的中点,所以
,所以
点为棱
的中点.
…6分
(2)相等.ABC-A1B1C1为直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D为BB1中点,∴VA1-B1C1CD=VC-A1ABD
在△ABC中,角A、B、C的对边分别为a、b、c,向量
=(sinA,b+c),
=(a-c,sinC-sinB),满足
=![]()
(Ⅰ)求角B的大小;
(Ⅱ)设
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值为3,求k的值.
【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用
第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,
即
,又由余弦定理
=2acosB,所以cosB=
,B=![]()
第二问中,m=(sin(C+
),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+
-
=-
+2ksinA+
=-
+
(k>1).
而0<A<
,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-
=3,得k=
.
在
中,
是三角形的三内角,
是三内角对应的三边,已知
成等差数列,
成等比数列
(Ⅰ)求角
的大小;
(Ⅱ)若
,求
的值.
【解析】第一问中利用依题意
且
,故![]()
第二问中,由题意
又由余弦定理知
![]()
,得到
,所以
,从而得到结论。
(1)依题意
且
,故
……………………6分
(2)由题意
又由余弦定理知
…………………………9分
即
故![]()
代入
得![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com