8.直线与椭圆的一个交点为.椭圆右准线与轴交于点.为坐标原点.且.则此椭圆的离心率为 查看更多

 

题目列表(包括答案和解析)

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M若MF1垂直于x轴,则椭圆的离心率为
 

查看答案和解析>>

椭圆的对称中心在坐标原点,一个顶点为A(0,2),右焦点F与点B(
2
 , 
2
)
的距离为2.
(1)求椭圆的方程;
(2)是否存在斜率k≠0的直线l:y=kx-2,使直线l与椭圆相交于不同的两点M,N满足|
AM 
| = |
AN 
|
,若存在,求直线l的倾斜角α;若不存在,说明理由.

查看答案和解析>>

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
左右两焦点分别为F1,F2,且离心率e=
6
3

(1)设E是直线y=x+2与椭圆的一个交点,求|EF1|+|EF2|取最小值时椭圆的方程;
(2)已知N(0,1),是否存在斜率为k的直线l与(1)中的椭圆交与不同的两点A,B,使得点N在线段AB的垂直平分线上,若存在,求出直线l在y轴上截距的范围;若不存在,说明理由.

查看答案和解析>>

椭圆C的中心为坐标原点O,点A1,A2分别是椭圆的左、右顶点,B为椭圆的上顶点,一个焦点为F(
3
,0),离心率为
3
2
.点M是椭圆C上在第一象限内的一个动点,直线A1M与y轴交于点P,直线A2M与y轴交于点Q.
(I)求椭圆C的标准方程;
(II)若把直线MA1,MA2的斜率分别记作k1,k2,求证:k1k2=-
1
4

(III) 是否存在点M使|PB|=
1
2
|BQ|,若存在,求出点M的坐标,若不存在,说明理由.

查看答案和解析>>

椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别是F1、F2,过F1作倾斜角为45°的直线与椭圆的一个交点为M,若MF2垂直于x轴,则椭圆的离心率为
2
-1
2
-1

查看答案和解析>>


同步练习册答案