13.设函数的最大值为.则对于一切.的最大值为 查看更多

 

题目列表(包括答案和解析)

设函数y=f(x)定义域为R,当x<0时,f(x)>1,且对于任意的x,y∈R,有f(x+y)=f(x)•f(y)成立.数列{an}满足a1=f(0),且 f(an+1)=
1
f(-2-an)
(n∈N*)

(Ⅰ) 求f(0)的值;
(Ⅱ) 求数列{an}的通项公式;
(Ⅲ) 是否存在正数k,使(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥k
2n+1
对一切n∈N*均成立,若存在,求出k的最大值,并证明,否则说明理由.

查看答案和解析>>

设函数y=f(x)定义域为R,当x<0时,f(x)>1,且对于任意的x,y∈R,有f(x+y)=f(x)•f(y)成立.数列{an}满足a1=f(0),且 f(an+1)=
1
f(-2-an)
(n∈N*)

(Ⅰ) 求f(0)的值;
(Ⅱ) 求数列{an}的通项公式;
(Ⅲ) 是否存在正数k,使(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥k
2n+1
对一切n∈N*均成立,若存在,求出k的最大值,并证明,否则说明理由.

查看答案和解析>>

设函数y=f(x)定义域为R,当x<0时,f(x)>1,且对于任意的x,y∈R,有f(x+y)=f(x)•f(y)成立.数列{an}满足a1=f(0),且 
(Ⅰ) 求f(0)的值;
(Ⅱ) 求数列{an}的通项公式;
(Ⅲ) 是否存在正数k,使对一切n∈N*均成立,若存在,求出k的最大值,并证明,否则说明理由.

查看答案和解析>>

(本小题共14分)

已知函数

   (1)试用含有a的式子表示b,并求的单调区间;

   (2)设函数的最大值为,试证明不等式:

 (3)首先阅读材料:对于函数图像上的任意两点,如果在函数图象上存在点,使得在点M处的切线,则称AB存在“相依切线”特别地,当时,则称AB存在“中值相依切线”。

请问在函数的图象上是否存在两点,使得AB存在“中值相依切线”?若存在,求出一组A、B的坐标;若不存在,说明理由。

 

查看答案和解析>>

(本小题共14分)

已知函数

(Ⅰ)试用含有a的式子表示b,并求的单调区间;

(Ⅱ)设函数的最大值为,试证明不等式:

(Ⅲ)首先阅读材料:对于函数图像上的任意两点,如果在函数图象上存在点,使得在点M处的切线,则称AB存在“相依切线”特别地,当时,则称AB存在“中值相依切线”。请问在函数的图象上是否存在两点,使得AB存在“中值相依切线”?若存在,求出一组A、B的坐标;若不存在,说明理由.

查看答案和解析>>

一、填空题

1.[]                   2.180                         3.40                   4.5                     5.

6.15                          7.30                          8.4                     9.                10.

11.(0 ,)            12.              13.                 14.4

二、解答题

15.(1)

                           

             

              (舍去)……………………………………………………7分

(2)

              …………………………………………………………………14分

16.

          所以OE//平面AA1B1B……………………………………………………………14分

17.

18.解:(1)为圆周的点到直线的距离为-------2分

的方程为

的方程为----------------------------------------------------------------5分

(2)设椭圆方程为,半焦距为c,则

椭圆与圆O恰有两个不同的公共点,则 ------------------------------6分

时,所求椭圆方程为;-------------8分

时,

所求椭圆方程为-------------------------------------------------------------10分

(3)设切点为N,则由题意得,在中,,则

N点的坐标为,------------------- 11分

若椭圆为其焦点F1,F2

分别为点A,B故,-----------------------------------13分

若椭圆为,其焦点为,

此时    -------------------------------------------15分

 

 

 

 

 

 

 

 

 

 

19.

 

第Ⅱ卷(附加题)参考答案

21.(1)                                     ………………………………………………4分

   (2) 时对应的向量为时对应的向量为……10分

 

22.解:(1)由方程的(2)式平方减去(1)式得:  5分

(2)曲线的焦点到准线的距离为,离心率为

所以曲线的极坐标方程为                     10分

23.解:(1)赋值法:分别令,得 -----2分

(2)-------------------------------------------------6分

(3)的系数为:

所以,当时,展开式中的系数最小,为81.----10分

24.

 


同步练习册答案