Tn +Tn?1 = .即:= n. 查看更多

 

题目列表(包括答案和解析)

为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a人在排队等候购票.开始售票后,排队的人数平均每分钟增b人.假设每个窗口的售票速度为c人/分钟,且当开放两个窗口时,25分钟后恰好不会出现排队现象(即排队的人刚好购完);若同时开放三个窗口时,则15分钟后恰好不会出现排队现象.
(1)若要求售票10分钟后不会出现排队现象,则至少需要同时开几个窗口?
(2)若a=60,在只开一个窗口的情况下,试求第n(n∈N*且n≤118)个购票者的等待时间tn关于n的函数,并求出第几个购票者的等待时间最长?
(注:购票者的等待时间指从开即始排队(售票开始前到达的人,从售票开始计时)到开始购票时止)

查看答案和解析>>

为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a人在排队等候购票.开始售票后,排队的人数平均每分钟增b人.假设每个窗口的售票速度为c人/分钟,且当开放两个窗口时,25分钟后恰好不会出现排队现象(即排队的人刚好购完);若同时开放三个窗口时,则15分钟后恰好不会出现排队现象.
(1)若要求售票10分钟后不会出现排队现象,则至少需要同时开几个窗口?
(2)若a=60,在只开一个窗口的情况下,试求第n(n∈N*且n≤118)个购票者的等待时间tn关于n的函数,并求出第几个购票者的等待时间最长?
(注:购票者的等待时间指从开即始排队(售票开始前到达的人,从售票开始计时)到开始购票时止)

查看答案和解析>>

为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a人在排队等候购票.开始售票后,排队的人数平均每分钟增b人.假设每个窗口的售票速度为c人/分钟,且当开放两个窗口时,25分钟后恰好不会出现排队现象(即排队的人刚好购完);若同时开放三个窗口时,则15分钟后恰好不会出现排队现象.
(1)若要求售票10分钟后不会出现排队现象,则至少需要同时开几个窗口?
(2)若a=60,在只开一个窗口的情况下,试求第n(n∈N*且n≤118)个购票者的等待时间tn关于n的函数,并求出第几个购票者的等待时间最长?
(注:购票者的等待时间指从开即始排队(售票开始前到达的人,从售票开始计时)到开始购票时止)

查看答案和解析>>

设Tn为数列{an}的前n项的积,即Tn=a1•a2…an
(1)若Tn=n2,求a3a4a5的值;
(2)若数列{an}各项都是正数,且满足Tn=
a
2
n
4
((n∈N*),证明数列{log2an}为等比数列,并求{an}的通项公式;
(3)数列{an}共有100项,且满足以下条件:①a1•a2…a100=2;②等式a1•a2…ak+ak+1•ak+2…a100=k+2对1≤k≤99,k∈N*恒成立.试问符合条件的数列共有多少个?为什么?

查看答案和解析>>

已知数列{an}是等差数列,a1=1,a1+a2+a3+…+a10=100.
(1)求数列{an}的通项公式;
(2)设数列{bn}的通项数学公式,记Tn是数列{bn}的前n项之积,即Tn=b1•b2•b3…bn,试证明:Tn数学公式

查看答案和解析>>


同步练习册答案