设.则a3的值是 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=(2-a)lnx+
1
x
+2ax
;(a∈R).
(1)当a=0时,求f(x)的极值.(2)当a≠0时,求f(x)的单调区间.(3)当a=2时,对于任意正整数n,在区间[
1
2
,6+n+
1
n
]
上总存在m+4个数a1,a2,a3,…,am,am+1,am+2,am+3,am+4,使得f(a1)+f(a2)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,试问:正整数m是否有最大值?若有求其最大值;否则,说明理由.

查看答案和解析>>

设函数数学公式;(a∈R).
(1)当a=0时,求f(x)的极值.(2)当a≠0时,求f(x)的单调区间.(3)当a=2时,对于任意正整数n,在区间数学公式上总存在m+4个数a1,a2,a3,…,am,am+1,am+2,am+3,am+4,使得f(a1)+f(a2)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,试问:正整数m是否有最大值?若有求其最大值;否则,说明理由.

查看答案和解析>>

设函数;(a∈R).
(1)当a=0时,求f(x)的极值.(2)当a≠0时,求f(x)的单调区间.(3)当a=2时,对于任意正整数n,在区间上总存在m+4个数a1,a2,a3,…,am,am+1,am+2,am+3,am+4,使得f(a1)+f(a2)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,试问:正整数m是否有最大值?若有求其最大值;否则,说明理由.

查看答案和解析>>

设函数;(a∈R).
(1)当a=0时,求f(x)的极值.(2)当a≠0时,求f(x)的单调区间.(3)当a=2时,对于任意正整数n,在区间上总存在m+4个数a1,a2,a3,…,am,am+1,am+2,am+3,am+4,使得f(a1)+f(a2)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,试问:正整数m是否有最大值?若有求其最大值;否则,说明理由.

查看答案和解析>>

设函数;(a∈R).
(1)当a=0时,求f(x)的极值.(2)当a≠0时,求f(x)的单调区间.(3)当a=2时,对于任意正整数n,在区间上总存在m+4个数a1,a2,a3,…,am,am+1,am+2,am+3,am+4,使得f(a1)+f(a2)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,试问:正整数m是否有最大值?若有求其最大值;否则,说明理由.

查看答案和解析>>

一、选择题

CBCDC  BBDDD

二、填空题

    11、-6    12、           13、5            14、[1,3 ]  (2分)       [2,5]          15、4

       16、⑴

         

      

三、解答题

17、⑴甲从选择题中抽到一题的可能结果有个,乙从判断题中抽到一题的可能结果有个,故甲抽到选择题,乙抽到判断题的可能结果有个,又甲、乙依次抽一题的可能结果有个,所以甲抽到选择题、乙抽到判断题的概率为:  (6分)

⑵甲、乙二人依次都抽到判断题的概率为,故甲、乙二人中至少有一个抽到选择题的概率为

或用以下解法:

上是增函数

上恒有

上恒成立

又∵

     

⑵依题意有

  令

1

(1,3)

3

(3,4)

4

 

0

+

 

 

 

 

 

 

 

                         (12分)

19、

20、⑴

     

    又

 

21、⑴解

代入①式得:

F1MF2中,由余弦定理得:

②―③得:

 ③