题目列表(包括答案和解析)
已知抛物线C:
与圆
有一个公共点A,且在A处两曲线的切线与同一直线l
(I) 求r;
(II) 设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离。
【解析】本试题考查了抛物线与圆的方程,以及两个曲线的公共点处的切线的运用,并在此基础上求解点到直线的距离。
【点评】该试题出题的角度不同于平常,因为涉及的是两个二次曲线的交点问题,并且要研究两曲线在公共点出的切线,把解析几何和导数的工具性结合起来,是该试题的创新处。另外对于在第二问中更是难度加大了,出现了另外的两条公共的切线,这样的问题对于我们以后的学习也是一个需要练习的方向。
![]()
△ABC中,内角A、B、C成等差数列,其对边a、b、c满足
,求A。
【解析】本试题主要考查了解三角形的运用,
因为
![]()
【点评】该试题从整体来看保持了往年的解题风格,依然是通过边角的转换,结合了三角形的内角和定理的知识,以及正弦定理和余弦定理,求解三角形中的角的问题。试题整体上比较稳定,思路也比较容易想,先将利用等差数列得到角B,然后利用余弦定理求解运算得到A。
若
则给出的数列{
第34项为( )
A. 1/103 B.1/100 C.103 D.100
求圆心
在直线
上,且经过原点及点
的圆
的标准方程.
【解析】本试题主要考查的圆的方程的求解,利用圆心和半径表示圆,首先设圆心C的坐标为(
),然后利用
,得到
,从而圆心
,半径
.可得原点 标准方程。
解:设圆心C的坐标为(
),...........2分
则
,即
,解得
........4分
所以圆心
,半径
...........8分
故圆C的标准方程为:
.......10分
![]()
已知函数![]()
(I) 讨论f(x)的单调性;
(II) 设f(x)有两个极值点
若过两点
的直线I与x轴的交点在曲线
上,求α的值。
【解析】本试题考查了导数在研究函数中的运用。第一就是三次函数,通过求解导数,求解单调区间。另外就是运用极值的概念,求解参数值的运用。
【点评】试题分为两问,题面比较简单,给出的函数比较常规,,这一点对于同学们来说没有难度但是解决的关键还是要看导数的符号的实质不变,求解单调区间。第二问中,运用极值的问题,和直线方程的知识求解交点,得到参数的值。
(1)
![]()
1. 构造向量
,
,所以
,
.由数量积的性质
,得
,即
的最大值为2.
2. ∵
,令
得
,所以
,当
时,
,当
时,
,所以当
时,
.
3.∵
,∴
,
,又
,∴
,则
,所以周期
.作出
在
上的图象知:若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,∴
;若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,
∴
.
4. 不等式
(
)表示的区域是如图所示的菱形的内部,
∵
,
当
,点
到点
的距离最大,此时
的最大值为
;
当
,点
到点
的距离最大,此时
的最大值为3.
5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有
种情况.抽到5 和14的两人在同一组,有两种情况:
(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有
种情况;
(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有
种情况.
于是,抽到5 和14 两张卡片的两人在同一组的概率为
.
6. ∵
,∴
,
设
,
,则
.
作出该不等式组表示的平面区域(图中的阴影部分
).
令
,则
,它表示斜率为
的一组平行直线,易知,当它经过点
时,
取得最小值.
解方程组
,得
,∴
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com