[解析]考察问题的几何意义:令, , 查看更多

 

题目列表(包括答案和解析)

已知均为实数,且

求证:中至少有一个大于

【解析】利用反证法的思想进行证明即可。首先否定结论假设a,b,c都不大于0然后在假设的前提下,即,得,而,即,与矛盾从而得到矛盾,假设不成立。

 

查看答案和解析>>

在面积为9的正方形内部随机取一点,则能使的面积大于的概率是_________.

【答案】

【解析】 要使的面积大于,需满足点P到AB的距离大于1,且点P在正方形内,即点P应在四边形EFCD内,所以概率为

查看答案和解析>>

【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C是正确的.

【答案】C

查看答案和解析>>

如图,已知点和单位圆上半部分上的动点B.

(1)若,求向量

(2)求的最大值.

【解析】对于这样的向量的坐标和模最值的求解,利用建立直角坐标系的方法可知。

第一问中,依题意,

因为,所以,即

解得,所以

第二问中,结合三角函数的性质得到最值。

(1)依题意,(不含1个或2个端点也对)

 (写出1个即可)

因为,所以,即

解得,所以.-

(2)

 时,取得最大值,

 

查看答案和解析>>

已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=

(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1

【解析】若函数的图象与轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为,令,解得,可知当极大值为,极小值为.由,解得,由,解得,所以,选A.

 

查看答案和解析>>

1. 由函数6ec8aac122bd4f6e知,当时,,且6ec8aac122bd4f6e,则它的反函数过点(3,4),故选A.  

 

2.∵,∴,则,即.,选B.

3. 由平行四边形法则,

,当P为中点时,取得最小值.选B.

4. 设是椭圆的一个焦点,它是椭圆三个顶点,,构成的三角形的垂心(如图).由,即,∴,得,解得,选A.

 

5. 设正方形边长为,则.在由正弦定理得,又在由余弦定理得,于是,选C.

6. 在底面上的射影知,为斜线在平面上的射影,∵,由三垂线定理得,∵,所以直线与直线重合,选A.

 

7. 过A作抛物线的准线的垂线AA1交准线A1,  过B作椭圆的右准线的垂线交右准线于则有:BN=e|BB1|=2-xB,AN=|AA1|=xA+1,周长=|AN|+|AB|+|BN|=xA+1+(xB-xA)+(2-xB)=3+xB

由可得两曲线的交点x=,xB∈(,2),

∴3+xB∈(,4),即△ANB周长取值范围是(,4),选B.

 

8. 先将3,5两个奇数排好,有种排法,再将4,6两个偶数插入3,5中,有种排法,最后将1,2 当成一个整体插入5个空位中,所以这样的六位数的个数为,选B.


同步练习册答案