题目列表(包括答案和解析)
(本小题满分14分)在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(I)若
,
,
,求方程
在区间
内的解集;
(II)若点
是曲线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(III)根据本题条件我们可以知道,函数
的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.【说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.】
1. 由函数
知,当
时,
,且
,则它的反函数过点(3,4),故选A.
2.∵
,∴
,则
,即
,
.
,选B.
3. 由平行四边形法则,
,
∴
,
又
,
∴
,当P为
中点时,取得最小值
.选B.
4. 设
是椭圆的一个焦点,它是椭圆三个顶点
,
,
构成的三角形的垂心(如图).由
有
,即
,∴
,得
,解得
,选A.
5. 设正方形边长为
,
,则
,
.在
由正弦定理得
,又在
由余弦定理得
,于是
,
,选C.
6.
在底面
上的射影
知,
为斜线
在平面
上的射影,∵
,由三垂线定理得
,∵
,所以直线
与直线
重合,选A.
7. 过A作抛物线
的准线的垂线AA1交准线A1,
过B作椭圆的右准线的垂线
交右准线于
则有:BN=e|BB1|=2-xB,AN=|AA1|=xA+1,周长
=|AN|+|AB|+|BN|=xA+1+(xB-xA)+(2-xB)=3+xB,
由可得两曲线的交点x=,xB∈(,2),
∴3+xB∈(,4),即△ANB周长
取值范围是(,4),选B.
8. 先将3,5两个奇数排好,有
种排法,再将4,6两个偶数插入3,5中,有
种排法,最后将1,2 当成一个整体插入5个空位中,所以这样的六位数的个数为
,选B.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com