解:(I)由题意
,…………………………1分
当
,
,
时,
,…2分
,则有
或
,
.
即
或
,
. ……………4分
又因为
,故
在
内的解集为
.……5分
(II)由题意,
是曲线
上的动点,故
. ……………6分
因此,
,
所以,
的值域
. ……………8分
又
的解为0和
,故要使
恒成立,只需
,而
,
即
,所以
的最大值
. …………………10分
(III)解:因为
,
设周期
.
由于函数
须满足“图像关于点
对称,且在
处
取得最小值”.
因此,根据三角函数的图像特征可知,
,
.
又因为,形如
的函数的图像的对称中心都是
的零点,故需满足
,而当
,
时,
因为
,
;所以当且仅当
,
时,
的图像关于点
对称;此时,
,
.
(i)当
时,
,进一步要使
处
取得最小值,则有
,
;又
,则有
,
;因此,由
可得
,
;
(ii)当
时,
,进一步要使
处
取得最小值,则有
,
;又
,则有
,
;因此,由
可得
,
;
综上,使得函数
满足“图像关于点
对称,且在
处
取得最小值”的充要条件是“当
时,
(
)或当
时,
(
)”. ……………………………………………………14分
(第III小题将根据学生对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分)