题目列表(包括答案和解析)
某种型号的汽车在匀速行驶中每小时耗油量
关于行驶速度
的函数解析式可以表示为:
.已知甲、乙两地相距
,设汽车的行驶速度为
,从甲地到乙地所需时间为
,耗油量为
.
(1)求函数
及
;
(2)求当
为多少时,
取得最小值,并求出这个最小值.
【解析】(1)
,根据
可求出y=f(x).
(2)求导,根据导数确定其最小值.
设
,
.
(1)当
时,求曲线
在
处的切线方程;
(2)如果存在
,使得
成立,求满足上述条件的最大整数
;
(3)如果对任意的
,都有
成立,求实数
的取值范围.
【解析】(1)求出切点坐标和切线斜率,写出切线方程;(2)存在
,
转化
解决;(3)任意的
,都有
成立即
恒成立,等价于
恒成立
设数列{
}的前n项和
满足:
=n
-2n(n-1).等比数列{
}的前n项和为
,公比为
,且
=
+2
.
(1)求数列{
}的通项公式;
(2)设数列{
}的前n项和为
,求证:
≤
<
.
【解析】
=
+2
求出
,由
=n
-2n(n-1)递写一个式子相减,得{
}为等差数列;(2)裂项法求
,然后证明
≤
<
.
某市旅游部门开发一种旅游纪念品,每件产品的成本是
元,销售价是
元,月平均销售
件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为![]()
,那么月平均销售量减少的百分率为
.记改进工艺后,旅游部门销售该纪念品的月平均利润是
(元).
(1)写出
与
的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
【解析】第一问先得到改进工艺后,每件产品的销售价为20(1+x),月平均销售量为
件,则月平均利润
(元),
∴y与x的函数关系式为
![]()
第二问中,求导数,
由
得
当
时
;
时![]()
得到最值。
解:(Ⅰ)改进工艺后,每件产品的销售价为20(1+x),月平均销售量为
件,则月平均利润
(元),
∴y与x的函数关系式为
.
(Ⅱ)由
得
当
时
;
时
,
∴函数![]()
在
取得最大值.
故改进工艺后,产品的销售价为20(1+1/2)=30元时,旅游部门销售该纪念品的月平均利润最大.
你可以从1~35中选出7个号码组成一注投注号码,中奖号码只有1个,只要你选出的7个号码中有1个与中奖号码相同即可中奖。此时中奖机会有多大?
你可以先写出自己打算投注的7个号码: , , , , , , 。然后开始实验:每次在1~35之间产生1个随机数,如果你选的7个号码中恰好有1个与之相同,你就中奖了;否则就不中。请你设计用计算器模拟实验的过程。
1. 由函数
知,当
时,
,且
,则它的反函数过点(3,4),故选A.
2.∵
,∴
,则
,即
,
.
,选B.
3. 由平行四边形法则,
,
∴
,
又
,
∴
,当P为
中点时,取得最小值
.选B.
4. 设
是椭圆的一个焦点,它是椭圆三个顶点
,
,
构成的三角形的垂心(如图).由
有
,即
,∴
,得
,解得
,选A.
5. 设正方形边长为
,
,则
,
.在
由正弦定理得
,又在
由余弦定理得
,于是
,
,选C.
6.
在底面
上的射影
知,
为斜线
在平面
上的射影,∵
,由三垂线定理得
,∵
,所以直线
与直线
重合,选A.
7. 过A作抛物线
的准线的垂线AA1交准线A1,
过B作椭圆的右准线的垂线
交右准线于
则有:BN=e|BB1|=2-xB,AN=|AA1|=xA+1,周长
=|AN|+|AB|+|BN|=xA+1+(xB-xA)+(2-xB)=3+xB,
由可得两曲线的交点x=,xB∈(,2),
∴3+xB∈(,4),即△ANB周长
取值范围是(,4),选B.
8. 先将3,5两个奇数排好,有
种排法,再将4,6两个偶数插入3,5中,有
种排法,最后将1,2 当成一个整体插入5个空位中,所以这样的六位数的个数为
,选B.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com