题目列表(包括答案和解析)
(本小题满分14分)已知函数
,
.
(Ⅰ)求函数
的单调区间;(Ⅱ)若函数
在[
上有零点,求
的最大值;(Ⅲ)证明:
在其定义域内恒成立,并比较
与
(![]()
且
)的大小.
(本小题满分14分)对于定义在区间D上的函数
,若存在闭区间
和常数
,使得对任意
,都有
,且对任意
∈D,当
时,
恒成立,则称函数
为区间D上的“平底型”函数.
(Ⅰ)判断函数
和
是否为R上的“平底
型”函数? 并说明理由;
(Ⅱ)设
是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式
对一切
R恒成立,求实数
的取值范围;
(Ⅲ)若函数
是区间
上的“平底型”函数,求
和
的值.
.
(本小题满分14分)
已知定义域为
的函数
同时满足以下三个条件:
① 对任意的
,总有
≥0; ②
;
③若
且
,则有
成立,并且称
为“友谊函数”,
请解答下列各题:
(1)若已知
为“友谊函数”,求
的值;
(2)函数
在区间
上是否为“友谊函数”?并给出理由.
(3)已知
为“友谊函数”,且
,求证:![]()
(本小题满分14分)
已知函数![]()
(Ⅰ)请研究函数
的单调性;
(Ⅱ)若函数
有两个零点,求实数
的取值范围;
(Ⅲ)若定义在区间D上的函数
对于区间D上的任意两个值x1、x2总有以下不等式
成立,则称函数
为区间D上的“凹函数”.若函
数
的最小值为
,试判断函数
是否为“凹函数”,并对你的判断加以证明.
(本小题满分14分)
已知函数
,
,其中
.
(1)若函数
是偶函数,求函数
在区间
上的最小值;
(2)用函数的单调性的定义证明:当
时,
在区间
上为减函数;
(3)当
,函数
的图象恒在函数
图象上方,求实数
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com