22.定义在区间上的函数满足:①对任意的 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)已知函数.

(Ⅰ)求函数的单调区间;(Ⅱ)若函数在[上有零点,求的最大值;(Ⅲ)证明:在其定义域内恒成立,并比较)的大小.


查看答案和解析>>

(本小题满分14分)对于定义在区间D上的函数,若存在闭区间和常数,使得对任意,都有,且对任意∈D,当时,恒成立,则称函数为区间D上的“平底型”函数.
(Ⅰ)判断函数是否为R上的“平底型”函数?   并说明理由;
(Ⅱ)设是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式 对一切R恒成立,求实数的取值范围;
(Ⅲ)若函数是区间上的“平底型”函数,求的值.
.

查看答案和解析>>

(本小题满分14分)
已知定义域为的函数同时满足以下三个条件:
① 对任意的,总有≥0; ②
③若,则有成立,并且称为“友谊函数”,
请解答下列各题:
(1)若已知为“友谊函数”,求的值;
(2)函数在区间上是否为“友谊函数”?并给出理由.
(3)已知为“友谊函数”,且 ,求证:

查看答案和解析>>

(本小题满分14分)
已知函数
(Ⅰ)请研究函数的单调性;
(Ⅱ)若函数有两个零点,求实数的取值范围;
(Ⅲ)若定义在区间D上的函数对于区间D上的任意两个值x1、x2总有以下不等式成立,则称函数为区间D上的“凹函数”.若函
的最小值为,试判断函数是否为“凹函数”,并对你的判断加以证明.

查看答案和解析>>

(本小题满分14分)

已知函数,其中

(1)若函数是偶函数,求函数在区间上的最小值;

(2)用函数的单调性的定义证明:当时,在区间上为减函数;

(3)当,函数的图象恒在函数图象上方,求实数的取值范围.

 

查看答案和解析>>


同步练习册答案