5. 已知.恒有成立.且.则实数k的值 查看更多

 

题目列表(包括答案和解析)

已知数列{an}是递增数列,且对任意n∈N*都有an=2n2+kn恒成立,则实数k的取值范围是
(-6,+∞)
(-6,+∞)

查看答案和解析>>

已知数列{an}是递增数列,且对任意n∈N*都有an=2n2+kn恒成立,则实数k的取值范围是   

查看答案和解析>>

已知数列{an}是递增数列,且对任意n∈N*都有an=2n2+kn恒成立,则实数k的取值范围是   

查看答案和解析>>

已知函数在区间上均有意义,且是其图象上横坐标分别为的两点.对应于区间内的实数,取函数的图象上横坐标为的点,和坐标平面上满足的点,得.对于实数,如果不等式恒成立,那么就称函数上“k阶线性近似”.若函数上“k阶线性近似”,则实数k的取值范围为
A.            B.          C.                                 D.

查看答案和解析>>

已知函数y=f(x)在区间[a,b]上均有意义,且A、B是其图象上横坐标分别为a、b的两点.对应于区间[0,1]内的实数λ,取函数y=f(x)的图象上横坐标为x=λa+(1-λ)b的点M,和坐标平面上满足=λ+(1-λ)的点N,得.对于实数k,如果不等式||≤k对λ∈[0,1]恒成立,那么就称函数f(x)在[a,b]上“k阶线性近似”.若函数y=x2+x在[1,2]上“k阶线性近似”,则实数k的取值范围为

[  ]
A.

B.[0,+∞)

C.[,+∞)

D.[,+∞)

查看答案和解析>>

一.选择题

   CADAD   CBCAD    BB

二.填空题

  ;61; 4;

三.解答题

17. 解:(I)由…………………………….2分

,所以为第一、三象限角

,所以,故 ……………..4分

(II)原式…………………………………6分

         ……..10分

18.解:                              ……………..2分

                                                        ……………..4分

      ,且该区间关于对称的.              ……………..6分

恰好有3个元素,所以.         ……………..8分

,                                     ……………..10分

解之得:.                                      ……………..12分

19. 解:(Ⅰ)∵

                   ,        ……………..2分

的图象的对称中心为,              ……………..4分

又已知点的图象的一个对称中心,∴

,∴.                                  ……………..6分

(Ⅱ)若成立,即时,,…8分

,                    ……………..10分

 ∵ 的充分条件,∴,解得

的取值范围是.                                ……………..12分

20.(1)                                           1分

又当时,                                            2分

时,

上式对也成立,

,                             

总之,                                                                 5分

(2)将不等式变形并把代入得:

                           7分

又∵

,即.                                 10分

的增大而增大,

.                                                                                     12分

 

 

 

21. 解:(I)

………………………………………………..2分

由正弦定理得:

整理得:………………………………………..4分

由余弦定理得:

…………………………………………………………………………6分

(II)由,即

……..8分

另一方面…………………...10分

由余弦定理得

当且仅当时取等号,所以的最小值为……………………………………………12分

22. 解:(I)由题意知.

  又对

,即上恒成立,上恒成立。所以.………………………..........3分

,于是

,所以的递增区间为………………….4分

(II).

。又上是增函数,

所以原不等式.

,只需的最小值不小于.………………………....6分

.

所以,当时取等号,即

解得.

 又所以只需.

所以存在这样的值使得不等式成立.………………………………………………………...8分

(III)由变形得

要使对任意的,恒有成立,

只需满足,……………………………………...10分

解得,即.……………………………………………………...12分

 

 

备选题:

设全集,函数的定义域为A,集合,若恰好有2个元素,求a的取值集合.

 

 

18.(本小题满分12分)

已知函数

(Ⅰ)当时,若,求函数的值;

(Ⅱ)把函数的图象按向量平移得到函数的图象,若函数是偶函数,写出最小的向量的坐标.

解:(Ⅰ)

 

(Ⅱ)设,所以,要使是偶函数,

即要,即

时,最小,此时, 即向量的坐标为

 

 

22.(本小题满分14分)

已知数列(常数),对任意的正整数,并有满足.

(Ⅰ)求的值;

(Ⅱ)试确定数列是否是等差数列,若是,求出其通项公式,若不是,说明理由;

(Ⅲ)对于数列,假如存在一个常数使得对任意的正整数都有,且,则称为数列的“上渐近值”,令,求数列的“上渐近值”.

解:(Ⅰ),即

   (Ⅱ)  

       ∴是一个以为首项,为公差的等差数列。

  (Ⅲ)

       ∴    

      又∵,∴数列的“上渐近值”为

 

 

 

 

 

 


同步练习册答案