题目列表(包括答案和解析)
(本题满分12分)已知椭圆中心在原点,焦点在x轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为
(1)求椭圆的标准方程;(2)已知直线L与椭圆相交于P、Q两点,O为原点,且OP⊥OQ。试探究点O到直线L的距离是否为定值?若是,求出这个定值;若不是,说明理由。
(本题满分12分)已知椭圆E:
(其中
),直 线L与椭圆只有一个公共点T;两条平行于y轴的直线
分别过椭圆的左、右焦点F1、F2,且直线L分别相交于A、B两点.
(Ⅰ)若直线L在
轴上的截距为
,求证: 直线L斜率的绝对值与椭圆E的离心率相等;(Ⅱ)若
的最大值为1200,求椭圆E的方程.
(本题满分12分)
已知椭圆
:
(
)的离心率
,左、右焦点分别为
、
,点
满足:
在线段
的中垂线上.
(1)求椭圆
的方程;
(2)若斜率为
(
)的直线
与
轴、椭圆
顺次相交于点
、
、
,且
,求
的取值范围.
(本题满分12分)
已知椭圆
的中心在坐标原点,焦点在
轴上,椭圆
上的点到焦点距离的最大值为
,最小值为
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
相交于
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点.求证:直线
过定点,并求出该定点的坐标.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com