已知函数(Ⅰ)当时.求使成立的的集合,(Ⅱ)求函数在区间[1,2]上的最小值.[分析]:本题是一道函数与导数综合运用问题,第一问对x进行讨论,得出方程,进而求出x的值;第二问对a进行讨论,结合函数的一阶导数值判断函数在区间上的单调性,进而求出函数的最小值.[解答]: 查看更多

 

题目列表(包括答案和解析)

(05年江苏卷)(14分)

已知函数

(Ⅰ)当a=2时,求使f(x)=x成立的x的集合;

(Ⅱ)求函数y=f (x)在区间[1,2]上的最小值.

 

查看答案和解析>>

(05年江苏卷)已知a,b为常数,若    .

查看答案和解析>>

(2010•江苏模拟)已知椭圆方程
x2
a2
+
y2
b2
=1
(a>b>0),当a2+
16
b(a-b)
的最小值时,椭圆的离心率e=
3
2
3
2

查看答案和解析>>

选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆C:
x=cosθ
y=sinθ
(θ为参数,0≤θ≤π)
上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
π
3

(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.

查看答案和解析>>

三题中任选两题作答
(1)(2011年江苏高考)已知矩阵A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校模考)以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
)
,若直线l过点P,且倾斜角为
π
3
,圆C以M为圆心、4为半径.
①求直线l的参数方程和圆C的极坐标方程;  ②试判定直线l和圆C的位置关系.
(3)若正数a,b,c满足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>


同步练习册答案