题目列表(包括答案和解析)
已知
.
(1)求
的单调区间;
(2)证明:当
时,
恒成立;
(3)任取两个不相等的正数
,且
,若存在
使
成立,证明:
.
【解析】(1)g(x)=lnx+
,
=![]()
(1’)
当k
0时,
>0,所以函数g(x)的增区间为(0,+
),无减区间;
当k>0时,
>0,得x>k;
<0,得0<x<k∴增区间(k,+
)减区间为(0,k)(3’)
(2)设h(x)=xlnx-2x+e(x
1)令
= lnx-1=0得x=e, 当x变化时,h(x),
的变化情况如表
|
x |
1 |
(1,e) |
e |
(e,+ |
|
|
|
- |
0 |
+ |
|
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)
0, ∴f(x)
2x-e
(5’)
设G(x)=lnx-
(x
1)
=
=![]()
0,当且仅当x=1时,
=0所以G(x) 为减函数, 所以G(x)
G(1)=0, 所以lnx-![]()
0所以xlnx![]()
(x
1)成立,所以f(x) ![]()
,综上,当x
1时, 2x-e
f(x)![]()
恒成立.
(3) ∵
=lnx+1∴lnx0+1=
=
∴lnx0=
-1
∴lnx0 –lnx
=
-1–lnx
=
=
=
(10’) 设H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t)
<H(1)=0∵
∴
=![]()
∴lnx0 –lnx
>0, ∴x0 >x![]()
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“
”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点
(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数
已知某地每单位面积的菜地年平均使用氮肥量![]()
与每单位面积蔬菜年平均产量
之间有的关系如下数据:
| 年份 | x(kg) | y(t) |
| 1985 | 70 | 5.1 |
| 1986 | 74 | 6.0 |
| 1987 | 80 | 6.8 |
| 1988 | 78 | 7.8 |
| 1989 | 85 | 9.0 |
| 1990 | 92 | 10.2 |
| 1991 | 90 | 10.0 |
| 1992 | 95 | 12.0 |
| 1993 | 92 | 11.5 |
| 1994 | 108 | 11.0 |
| 1995 | 115 | 11.8 |
| 1996 | 123 | 12.2 |
| 1997 | 130 | 12.5 |
| 1998 | 138 | 12.8 |
| 1999 | 145 | 13.0 |
(1)求x与y之间的相关系数,并检验是否线性相关;
(2)若线性相关,则求蔬菜产量y与使用氮肥x之间的回归直线方程,并估计每单位面积施150kg时,每单位面积蔬菜的平均产量.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com