(舍)所以t=1---------------------9分 查看更多

 

题目列表(包括答案和解析)

已知

(1)求的单调区间;

(2)证明:当时,恒成立;

(3)任取两个不相等的正数,且,若存在使成立,证明:

【解析】(1)g(x)=lnx+=        (1’)

当k0时,>0,所以函数g(x)的增区间为(0,+),无减区间;

当k>0时,>0,得x>k;<0,得0<x<k∴增区间(k,+)减区间为(0,k)(3’)

(2)设h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 当x变化时,h(x),的变化情况如表

x

1

(1,e)

e

(e,+)

 

0

+

h(x)

e-2

0

所以h(x)0, ∴f(x)2x-e                    (5’)

设G(x)=lnx-(x1) ==0,当且仅当x=1时,=0所以G(x) 为减函数, 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,综上,当x1时, 2x-ef(x)恒成立.

(3) ∵=lnx+1∴lnx0+1==∴lnx0=-1      ∴lnx0 –lnx=-1–lnx===(10’)  设H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t) <H(1)=0∵=

∴lnx0 –lnx>0, ∴x0 >x

 

查看答案和解析>>

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

已知某地每单位面积的菜地年平均使用氮肥量与每单位面积蔬菜年平均产量之间有的关系如下数据:

年份

x(kg)

y(t)

1985

70

5.1

1986

74

6.0

1987

80

6.8

1988

78

7.8

1989

85

9.0

1990

92

10.2

1991

90

10.0

1992

95

12.0

1993

92

11.5

1994

108

11.0

1995

115

11.8

1996

123

12.2

1997

130

12.5

1998

138

12.8

1999

145

13.0

(1)求xy之间的相关系数,并检验是否线性相关;

(2)若线性相关,则求蔬菜产量y与使用氮肥x之间的回归直线方程,并估计每单位面积施150kg时,每单位面积蔬菜的平均产量.

查看答案和解析>>

甲城市到乙城市t分钟的电话费由函数g(t)=1.06×(0.75[t]+1)给出,其中t>0,[t]表示大于或等于t的最小整数,则从甲城市到乙城市5.5分钟的电话费为(  )

查看答案和解析>>

设函数f(x)=x2-2x+2,x∈[t,t+1](t∈R)的最小值为g(t),求g(t)的表达式.

查看答案和解析>>

已知函数f(x)=4x3+3tx2-6t2x+t-1,其中t>0.
(1)求f(x)的单调区间;
(2)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点.

查看答案和解析>>


同步练习册答案