∴.故(当且仅当时.等号成立). 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻(时) 的关系为,其中是与气象有关的参数,且

(1)令, ,写出该函数的单调区间,并选择其中一种情形进行证明;

(2)若用每天的最大值作为当天的综合放射性污染指数,并记作,求

(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?

【解析】第一问利用定义法求证单调性,并判定结论。

第二问(2)由函数的单调性知

,即t的取值范围是. 

时,记

 

上单调递减,在上单调递增,

第三问因为当且仅当时,.

故当时不超标,当时超标.

 

查看答案和解析>>

若对任意,()有唯一确定的与之对应,则称为关于的二元函数。现定义满足下列性质的二元函数为关于实数的广义“距离”:

  (1)非负性:,当且仅当时取等号;

  (2)对称性:;

  (3)三角形不等式:对任意的实数均成立.

今给出三个二元函数,请选出所有能够成为关于的广义“距离”的序号:

;②;③._________________.

查看答案和解析>>

一个位自然数百位,十位,个位上的数字依次为,当且仅当时称为凹数(如213312等),,且互不相同,这个三位数凹数概率为( )

A. B. C. D.

 

查看答案和解析>>

已知,给出下列说法:①若的夹角为锐角,则;②当且仅当时,互相垂直;③不可能是方向相反的两个向量;④若,则.其中正确的序号是   

A.①②③         B.①②③④         C. ②④           D. ②③

 

查看答案和解析>>


同步练习册答案