用类似方法可得.当时.符合条件的不同选择方法共有种. 查看更多

 

题目列表(包括答案和解析)

24、(1)如图,在图1中,互不重叠的三角形共有3个,在图2中,互不重叠的三角形共有5个,在图3中,互不重叠的三角形共有7个,…,则在第n个图形中,互不重叠的三角形共有
2n+1
个.(用含n的代数式表示)

(2)若在如图4所示的n边形中,P是A1An边上的点,分别连接PA2、PA3、PA4…PAn-1,得到n-1个互不重叠的三角形.

你能否根据这样的划分方法写出n边形的内角和公式并说明你的理由;
(3)反之,若在四边形内部有n个不同的点,按照(1)中的方法可得k个互不重叠的三角形,试探究n与k的关系.

查看答案和解析>>

阅读下列材料:
在图1-图4中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
小明的做法:当2b<a时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.
进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
解决下列问题:
(1)正方形FGCH的面积是
 
;(用含a,b的式子表示)
(2)类比图1的剪拼方法,请你就图2-图4的三种情形分别画出剪拼成一个新正方形的示意图.精英家教网

查看答案和解析>>

25、在图1-5中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
操作示例:
当2b<a时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
思考发现:
小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
实践探究:
(1)正方形FGCH的面积是
a2+b2
;(用含a,b的式子表示)
(2)类比图1的剪拼方法,请你就图2-图4的三种情形分别画出剪拼成一个新正方形的示意图.

联想拓展:
小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移;当b>a时,如图5的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.

查看答案和解析>>

有足够多的长方形和正方形卡片,如图:
(1)如果选取1号、2号、3号卡片分别为l张、1张、2张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.
这个长方形的代数意义是
两数和的平方等于两数的平方和加上两数积的2倍
两数和的平方等于两数的平方和加上两数积的2倍

(2)小明用类似方法解释分解因式4a2+8ab+3b2,请拼图说明小明的方法,并写出分解因式的结果.

查看答案和解析>>

19、有足够多的长方形和正方形卡片,如下图:

(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.

这个长方形的代数意义是
a2+3ab+2b2=(a+b)(a+2b)

(2)小明想用类似方法解释多项式乘法(a+3b)(2a+b)=2a2+7ab+3b2,那么需用2号卡片
3
张,3号卡片
7
张.

查看答案和解析>>


同步练习册答案