参考解答如下:解法一: (Ⅰ) 由已知MN⊥l1 , AM=MB=MN,可知AN=NB且AN⊥NB. 又由已知l2⊥MN, l2⊥l1 , MN∩l1 =M, 可得l2⊥平面ABN.从而AN为AC在平面ABN内的射影. ∴AC⊥NB (Ⅱ)∵ Rt△CNA≌Rt△CNB, ∴AC=BC,又已知∠ACB=60°,因此△ABC为正三角形.∵Rt△ANB≌Rt△CNB, ∴NC=NA=NB.因此N在平面ABC内的射影H是正三角形ABC的中心.连结BH.∠NBH为NB与平面ABC所成的角. 查看更多

 

题目列表(包括答案和解析)

阅读下列解题过程,借鉴其中一种方法解答后面给出的试题:
问题:某人买13个鸡蛋,5个鸭蛋、9个鹅蛋共用去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共用去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元.
分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x、y、z元,则需要求x+y+z的值.由题意,知
13x+5y+9z=9.25---(1)
2x+4y+3z=3.20----(2)

视x为常数,将上述方程组看成是关于y、z的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解.
解法1:视x为常数,依题意得
5y+9z=9.25-13x---(3)
4y+3z=3.20-2x----(4)

解这个关于y、z的二元一次方程组得
y=0.05+x
z=1-2x

于是x+y+z=x+0.05+x+1-2x=1.05.
评注:也可以视z为常数,将上述方程组看成是关于x、y的二元一次方程组,解答方法同上,你不妨试试.
分析:视x+y+z为整体,由(1)、(2)恒等变形得5(x+y+z)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20.
解法2:设x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下关于a、b的二元一次方
程组
5a+4b=9.25---(5)
4a-b=3.20----(6)

由⑤+4×⑥,得21a+22.05,a=1.05.
评注:运用整体的思想方法指导解题.视x+y+z,2x+z为整体,令a=x+y+z,b=2x+z,代入①、②将原方程组转化为关于a、b的二元一次方程组从而获解.
请你运用以上介绍的任意一种方法解答如下数学竞赛试题:
购买五种教学用具A1、A2、A3、A4、A5的件数和用钱总数列成下表:
精英家教网
那么,购买每种教学用具各一件共需多少元?

查看答案和解析>>

(2013•顺义区二模)问题:如果存在一组平行线a∥b∥c,请你猜想是否可以作等边三角形ABC使其三个顶点分别在a、b、c上?
小明同学的解答如下:如图1所示,过点A作AM⊥b于M,作∠MAN=60°,且AN=AM,过点N作CN⊥AN交直线c于点C,在直线b上取点B使BM=CN,则△ABC为所求.

(1)请你参考小明的作法,在图2中作一个等腰直角三角形DEF使其三个顶点分别在a、b、c上,点D为直角顶点;
(2)若直线a、b之间的距离为1,b、c之间的距离为2,则在图2中,S△DEF=
5
5
,在图1中AC=
2
3
21
2
3
21

查看答案和解析>>

两河流交汇于点M处,甲河流水速为4km/h,乙河流水速为2km/h,一只船在静水中的速度为10km/h。某次该船只,从甲河流的上游A行驶到交汇处M后再沿乙河流逆流而上到B点,总共行驶了69km。原路返回后,发现往返所用时间相等。求此次航行往返总时间?

三、(10分)27、水平直线上顺次三点A、O、B,以O为顶点在直线上方做∠COD=40°,OM、ON分别平分∠AOC和∠BOD,求∠MON的度数。

四、(12分)28、某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时。其它主要参考数据如下:

运输工具

途中平均速度

(千米/时)

运费

(元/千米)

装卸费用

(元)[来源:学。科。网Z。X。X。K]

火车

100

15

2000

汽车

80

20

900

(1)       如果汽车的总支出费用比火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答。

如果A市与某市之间的距离为S千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,你若是A市水果批发部门的经理,要想将这种水果运往其他地区销售。你将选择哪种运输方式比较合算呢?

 

查看答案和解析>>

问题:如果存在一组平行线,请你猜想是否可以作等边三角形使其三个顶点分别在上.
小明同学的解答如下:如图1所示,过点,作,且,过点交直线于点,在直线上取点使,则为所求.

(1)请你参考小明的作法,在图2中作一个等腰直角三角形使其三个顶点分别在上,点为直角顶点;
(2)若直线之间的距离为1,之间的距离为2,则在图2中,          ,在图1中,               .

查看答案和解析>>

问题:如果存在一组平行线,请你猜想是否可以作等边三角形使其三个顶点分别在上.

小明同学的解答如下:如图1所示,过点,作,且,过点交直线于点,在直线上取点使,则为所求.

(1)请你参考小明的作法,在图2中作一个等腰直角三角形使其三个顶点分别在上,点为直角顶点;

(2)若直线之间的距离为1,之间的距离为2,则在图2中,          ,在图1中,               .

 

查看答案和解析>>


同步练习册答案