16. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)有一问题,在半小时内,甲能解决它的概率是0.5,乙能解决它的概率是

 如果两人都试图独立地在半小时内解决它,计算:w.w.w.k.s.5.u.c.o.m      

   (1)两人都未解决的概率;

   (2)问题得到解决的概率。

查看答案和解析>>

(本小题满分13分)  已知是等比数列, ;是等差数列, , .

(1) 求数列的通项公式;

(2) 设+…+,,其中,…试比较的大小,并证明你的结论.

查看答案和解析>>

(本小题满分13分) 现有一批货物由海上从A地运往B地,已知货船的最大航行速度为35海里/小时,A地至B地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费用与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.

(1)把全程运输成本y(元)表示为速度x(海里/小时)的函数;

(2)为了使全程运输成本最小,轮船应以多大速度行驶?

查看答案和解析>>

(本小题满分13分)

如图,ABCD的边长为2的正方形,直线l与平面ABCD平行,g和F式l上的两个不同点,且EA=ED,FB=FC, 是平面ABCD内的两点,都与平面ABCD垂直,

(Ⅰ)证明:直线垂直且平分线段AD:w.w.w.k.s.5.u.c.o.m       

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

体ABCDEF的体积。

 

查看答案和解析>>

(本小题满分13分)两个人射击,甲射击一次中靶概率是p1,乙射击一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若两人各射击5次,甲的方差是 .(1) 求 p1p2的值;(2) 两人各射击2次,中靶至少3次就算完成目的,则完成目的的概率是多少?(3) 两人各射击一次,中靶至少一次就算完成目的,则完成目的的概率是多少?

查看答案和解析>>

一.选择题:

题号

1

2

3

4

5

6

7

8

答案

C

A

C

B

B

A

B

D

二.填空题:

9.6、30、10;                 10.?5;               11.

12.?250;                     13.;              14.③④

三.解答题:

15.解: ;  ………5分

方程有非正实数根

 

综上: ……………………12分16.解:(I)设袋中原有个白球,由题意知

可得(舍去)

答:袋中原有3个白球. 。。。。。。。。4分

(II)由题意,的可能取值为1,2,3,4,5

 

所以的分布列为:

1

2

3

4

5

。。。。。。。。。9分

(III)因为甲先取,所以甲只有可能在第一次,第三次和第5次取球,记”甲取到白球”为事件,则

答:甲取到白球的概率为.。。。。。。。。13分

17.解:(1)由.,∴=1;。。。。。。。。。4分

(2)任取∈(1,+∞),且设,则:

>0,

在(1,+∞)上是单调递减函数;。。。。。。。。。8分

(3)当直线∈R)与的图象无公共点时,=1,

<2+=4=,|-2|+>2,

得:.。。。。。。。。13分

18.(Ⅰ)证明:∵底面底面, ∴

   又∵平面平面

    ∴平面3分

(Ⅱ)解:∵点分别是的中点,

,由(Ⅰ)知平面

平面

为二面角的平面角,

底面,∴与底面所成的角即为

,∵为直角三角形斜边的中点,

为等腰三角形,且,∴

(Ⅲ)过点于点,∵底面,

   ∴底面,为直线在底面上的射影,

   要,由三垂线定理的逆定理有要

 设,则由

 又∴在直角三角形中,

∵ 

在直角三角形中,

 ,即时,

(Ⅲ)以点为坐标原点,建立如图的直角坐标系,设,则,设,则

,

,时时,.

 

 

19  证明:(1)对任意x1, x2∈R, 当 a0,

=                         =……(3分)

∴当时,,即

  当时,函数f(x)是凸函数.   ……(4分)

 (2) 当x=0时, 对于a∈R,有f(x)≤1恒成立;当x∈(0, 1]时, 要f(x)≤1恒成立

, ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 当=1时, 取到最小值为0,∴ a≤0, 又a≠0,∴ a的取值范围是.

由此可知,满足条件的实数a的取值恒为负数,由(1)可知函数f(x)是凸函数………10分

(3)令,∵,∴,……………..(11)分

,则,故

,则

;,……………..(12)分

,则;∴时,.

综上所述,对任意的,都有;……………..(13)分

所以,不是R上的凸函数. ……………..(14)分

对任意,有

所以,不是上的凸函数. ……………..(14)分

20. 解:(1)设数列的前项和为,则

……….4分

(2)为偶数时,

为奇数时,

………9分

(3)方法1、因为所以

,时,

又由,两式相减得

 所以若,则有………..14分

方法2、由,两式相减得

………..11分

所以要证明,只要证明

或①由:

所以…………………14分

或②由:

…………………14分

数学归纳法:①当

②当

综上①②知若,则有.

所以,若,则有.。。。。。。。。。14分

 

 


同步练习册答案