(Ⅲ)当为何值时..并请证明你的结论. 查看更多

 

题目列表(包括答案和解析)

探究函数f(x)=2x+
8
x
-3,x∈(0,+∞)上的最小值,并确定取得最小值时x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 14 7 5.34 5.11 5.01 5 5.01 5.04 5.08 5.67 7 8.6 12.14
(1)观察表中y值随x值变化趋势特点,请你直接写出函数f(x)=2x+
8
x
-3,x∈(0,+∞)的单调区间,并指出当x取何值时函数的最小值为多少;
(2)用单调性定义证明函数f(x)=2x+
8
x
-3在(0,2)上的单调性.

查看答案和解析>>

如图,四棱锥P-ABCD中,PD底面ABCD,ADAB,CD//AB且AB=AD,PA与底面ABCD成60角,点M,N分别是PA,PB的中点.

(Ⅰ)求证:AB平面PAD;

(Ⅱ)求二面角P-MN-D的大小;

(Ⅲ)当为何值时,DNBC,并请证明你的结论.

查看答案和解析>>

如图(1),在直角梯形ACC1A1中,∠CAA1=90°,AA1∥CC1,AA1=4,AC=3,CC1=1,点B在线段AC上,AB=2BC,BB1∥AA1,且BB1交A1C1于点B1.现将梯形ACC1A1沿直线BB1折成二面角A-BB1-C,设其大小为θ.
(1)在上述折叠过程中,若90°≤θ≤180°,请你动手实验并直接写出直线A1B1与平面BCC1B1所成角的取值范围.(不必证明);
(2)当θ=90°时,连接AC、A1C1、AC1,得到如图(2)所示的几何体ABC-A1B1C1
(i)若M为线段AC1的中点,求证:BM∥平面A1B1C1
(ii)记平面A1B1C1与平面BCC1B1所成的二面角为α(0<α≤90°),求cosa的值.

查看答案和解析>>

(2011•莆田模拟)如图(1),在直角梯形ACC1A1中,∠CAA1=90°,AA1∥CC1,AA1=4,AC=3,CC1=1,点B在线段AC上,AB=2BC,BB1∥AA1,且BB1交A1C1于点B1.现将梯形ACC1A1沿直线BB1折成二面角A-BB1-C,设其大小为θ.
(1)在上述折叠过程中,若90°≤θ≤180°,请你动手实验并直接写出直线A1B1与平面BCC1B1所成角的取值范围.(不必证明);
(2)当θ=90°时,连接AC、A1C1、AC1,得到如图(2)所示的几何体ABC-A1B1C1
(i)若M为线段AC1的中点,求证:BM∥平面A1B1C1
(ii)记平面A1B1C1与平面BCC1B1所成的二面角为α(0<α≤90°),求cosa的值.

查看答案和解析>>

一.选择题:

题号

1

2

3

4

5

6

7

8

答案

C

A

C

B

B

A

B

D

二.填空题:

9.6、30、10;                 10.?5;               11.

12.?250;                     13.;              14.③④

三.解答题:

15.解: ;  ………5分

方程有非正实数根

 

综上: ……………………12分16.解:(I)设袋中原有个白球,由题意知

可得(舍去)

答:袋中原有3个白球. 。。。。。。。。4分

(II)由题意,的可能取值为1,2,3,4,5

 

所以的分布列为:

1

2

3

4

5

。。。。。。。。。9分

(III)因为甲先取,所以甲只有可能在第一次,第三次和第5次取球,记”甲取到白球”为事件,则

答:甲取到白球的概率为.。。。。。。。。13分

17.解:(1)由.,∴=1;。。。。。。。。。4分

(2)任取∈(1,+∞),且设,则:

>0,

在(1,+∞)上是单调递减函数;。。。。。。。。。8分

(3)当直线∈R)与的图象无公共点时,=1,

<2+=4=,|-2|+>2,

得:.。。。。。。。。13分

18.(Ⅰ)证明:∵底面底面, ∴

   又∵平面平面

    ∴平面3分

(Ⅱ)解:∵点分别是的中点,

,由(Ⅰ)知平面

平面

为二面角的平面角,

底面,∴与底面所成的角即为

,∵为直角三角形斜边的中点,

为等腰三角形,且,∴

(Ⅲ)过点于点,∵底面,

   ∴底面,为直线在底面上的射影,

   要,由三垂线定理的逆定理有要

 设,则由

 又∴在直角三角形中,

∵ 

在直角三角形中,

 ,即时,

(Ⅲ)以点为坐标原点,建立如图的直角坐标系,设,则,设,则

,

,时时,.

 

 

19  证明:(1)对任意x1, x2∈R, 当 a0,

=                         =……(3分)

∴当时,,即

  当时,函数f(x)是凸函数.   ……(4分)

 (2) 当x=0时, 对于a∈R,有f(x)≤1恒成立;当x∈(0, 1]时, 要f(x)≤1恒成立

, ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 当=1时, 取到最小值为0,∴ a≤0, 又a≠0,∴ a的取值范围是.

由此可知,满足条件的实数a的取值恒为负数,由(1)可知函数f(x)是凸函数………10分

(3)令,∵,∴,……………..(11)分

,则,故

,则

;,……………..(12)分

,则;∴时,.

综上所述,对任意的,都有;……………..(13)分

所以,不是R上的凸函数. ……………..(14)分

对任意,有

所以,不是上的凸函数. ……………..(14)分

20. 解:(1)设数列的前项和为,则

……….4分

(2)为偶数时,

为奇数时,

………9分

(3)方法1、因为所以

,时,

又由,两式相减得

 所以若,则有………..14分

方法2、由,两式相减得

………..11分

所以要证明,只要证明

或①由:

所以…………………14分

或②由:

…………………14分

数学归纳法:①当

②当

综上①②知若,则有.

所以,若,则有.。。。。。。。。。14分

 

 


同步练习册答案