(2)依题意知的的取值为0和2由(1)所求可知 查看更多

 

题目列表(包括答案和解析)

一自来水厂用蓄水池通过管道向所管辖区域供水.某日凌晨,已知蓄水池有水9千吨,水厂计划在当日每小时向蓄水池注入水2千吨,且每小时通过管道向所管辖区域供水千吨.

(1)多少小时后,蓄水池存水量最少?

(2)当蓄水池存水量少于3千吨时,供水就会出现紧张现象,那么当日出现这种情况的时间有多长?

【解析】第一问中(1)设小时后,蓄水池有水千吨.依题意,,即(小时)时,蓄水池的水量最少,只有1千吨

第二问依题意,   解得:

解:(1)设小时后,蓄水池有水千吨.………………………………………1分

依题意,…………………………………………4分

,即(小时)时,蓄水池的水量最少,只有1千吨. ………2分

(2)依题意,   ………………………………………………3分

解得:.  …………………………………………………………………3分

所以,当天有8小时会出现供水紧张的情况

 

查看答案和解析>>

在本次数学期中考试试卷中共有10道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题都给出一个答案, 且已确定有7道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:

(1)选择题得满分(50分)的概率;

(2)选择题所得分数的数学期望。

【解析】第一问总利用独立事件的概率乘法公式得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:

第二问中,依题意,该考生得分的范围为{35,40,45,50}         

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                            

得分为40分的概率为: 

同理求得,得分为45分的概率为: 

得分为50分的概率为:

得到分布列和期望值。

解:(1)得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:                   …………5分

(2)依题意,该考生得分的范围为{35,40,45,50}            …………6分

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                              …………7分

得分为40分的概率为:     …………8分

同理求得,得分为45分的概率为:                     …………9分

得分为50分的概率为:                      …………10分

所以得分的分布列为

35

40

45

50

 

数学期望

 

查看答案和解析>>

(本小题满分12分)

(1) 已知角的终边上有一点,求的值;

(2) 已知的值。

 

查看答案和解析>>

在△OAB中,==,AD与BC交于M点,设=a=b.

(1)用ab表示.

(2)在已知线段上取一点E,在线段上取一点F,使过点M.设=p,=q,求证:

查看答案和解析>>

(2012•甘肃一模)(理科)某中学高一年级美术学科开设书法、绘画、雕塑三门校本选修课,学生可选也可不选,学生是否选修哪门课互不影响.已知某学生只选修书法的概率为0.08,只选修书法和绘画的概率是0.12,至少选修一门的概率是0.88.
(1)依题意分别计算该学生选修书法、绘画、雕塑三门校本选修课的概率;
(2)用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积,求随机变量ξ的分布列和数学期望.

查看答案和解析>>


同步练习册答案