题目列表(包括答案和解析)
实数x、y满足不等式组
,则W=
的取值范围( )
A.[-1,0] B.(-∞,0] C.[-1,+∞) D.[-1,1)
|
某校从参加高三年级理科综合物理考试的学生中随机抽出
名学生,将其数学成绩(均为整数)分成六段
,
…
后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在
内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的
平均分;
(Ⅲ)若从
名学生中随机抽取
人,抽到的学生成绩在
记
分,在
记
分,
在
记
分,用
表示抽取结束后的总记分,求
的分布列和数学期望.
![]()
【解析】(1)中利用直方图中面积和为1,可以求解得到分数在
内的频率为![]()
(2)中结合平均值可以得到平均分为:![]()
(3)中用
表示抽取结束后的总记分x, 学生成绩在
的有
人,在
的有
人,在
的有
人,结合古典概型的概率公式求解得到。
(Ⅰ)设分数在
内的频率为
,根据频率分布直方图,则有
,可得
,所以频率分布直方图如右图.……4分
![]()
![]()
(求解频率3分,画图1分)
(Ⅱ)平均分为:
……7分
(Ⅲ)学生成绩在
的有
人,在
的有
人,
在
的有
人.并且
的可能取值是
. ………8分
则
;
;
;
;
.(每个1分)
所以
的分布列为
|
|
0 |
1 |
2 |
3 |
4 |
|
|
|
|
|
|
|
…………………13分
![]()
1――12 A B B B B C D D C A C B
13、1 14、e 15、
16、①②④
17、解
在
上是增函数,

方程
=x2 + (m ? 2 )x + 1 = 0的两个根在0至3之间
∴
∴
∴
<m≤0
依题意得:m的取值范围是:
<m≤-1或m>0
18、解:(1)
,
当a=1时 解集为
当a>1时,解集为
,
当0<a<1时,解集为
;
(2)依题意知f(1)是f(x)的最小值,又f(1)不可能是端点值,则f(1)是f(x)的一个极小值,由
,
19、解:(1)当
所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,
所以f(x)=
(2)由题意,不妨设A点在第一象限,坐标为(t,-t2-t+5)其中,
,
则S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.
,
令
得
(舍去),t2=1.
当
时
,所以S(t)在
上单调递增,在
上单调递减,
所以当t=1时,ABCD的面积取得极大值也是S(t)在
上的最大值。
从而当t=1时,矩形ABCD的面积取得最大值6.
20、解:

21、解:
,
令
,要使
在其定义域
内为单调函数,只需
在
内满足:
或
恒成立.
① 当
时,
,∵
,∴
,∴
,
∴
在
内为单调递减.
② 当
时,
,对称轴为
, ∴
.
只需
,即
时
,
,
∴
在
内为单调递增。
③当
时,
,对称轴为
.
只需
,即
时
在
恒成立.
综上可得,
或
.
22、解:(Ⅰ)

同理,令
∴f(x)单调递增区间为
,单调递减区间为
.
由此可知
(Ⅱ)由(I)可知当
时,有
,
即
.
.
(Ⅲ) 设函数

∴函数
)上单调递增,在
上单调递减.
∴
的最小值为
,即总有
而

即
令
则


湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com