21 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)
对甲、乙两种商品的重量的误差进行抽查,测得数据如下(单位:):
甲:13  15  14  14  9  14  21  9   10  11
乙:10  14  9  12  15  14  11  19  22  16
(1)画出样本数据的茎叶图,并指出甲,乙两种商品重量误差的中位数;
(2)计算甲种商品重量误差的样本方差;
(3)现从重量误差不低于15的乙种商品中随机抽取两件,求重量误差为19的商品被抽
中的概率。

查看答案和解析>>

(本题满分12分)设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.

(1)求{an},{bn}的通项公式;          (2)求数列的前n项和Sn.

 

查看答案和解析>>

(本题满分12分)

对甲、乙两种商品的重量的误差进行抽查,测得数据如下(单位:):

       甲:13  15  14  14  9  14  21  9   10  11

       乙:10  14  9  12  15  14  11  19  22  16

(1)画出样本数据的茎叶图,并指出甲,乙两种商品重量误差的中位数;

(2)计算甲种商品重量误差的样本方差;

(3)现从重量误差不低于15的乙种商品中随机抽取两件,求重量误差为19的商品被抽

中的概率。

 

查看答案和解析>>

(本题满分12分)探究函数的最小值,并确定取得最小值时x的值. 列表如下, 请观察表中y值随x值变化的特点,完成以下的问题.

x

0.25
0.5
0.75
1
1.1
1.2
1.5
2
3
5

y

8.063
4.25
3.229
3
3.028
3.081
3.583
5
9.667
25.4

已知:函数在区间(0,1)上递减,问:
(1)函数在区间                  上递增.当               时,                 
(2)函数在定义域内有最大值或最小值吗?如有,是多少?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

(本题满分12分)对甲、乙两种商品的重量的误差进行抽查,测得数据如下(单位:):

    甲:13 15 14 14 9 14 21 9  10 11

    乙:10 14 9 12 15 14 11 19 22 16

(1)画出样本数据的茎叶图,并指出甲,乙两种商品重量误差的中位数;

(2)计算甲种商品重量误差的样本方差;

(3)现从重量误差不低于15的乙种商品中随机抽取两件,求重量误差为19的商品被抽中的概率。

查看答案和解析>>

1――12   A  B  B  B  B  C  D  D  C  A  C  B

 

13、1            14、e             15、      16、①②④     

17、解上是增函数,

方程=x2 + (m ? 2 )x + 1 = 0的两个根在0至3之间

<m≤0

依题意得:m的取值范围是:<m≤-1或m>0

18、解:(1),

当a=1时 解集为

当a>1时,解集为

当0<a<1时,解集为

(2)依题意知f(1)是f(x)的最小值,又f(1)不可能是端点值,则f(1)是f(x)的一个极小值,由

19、解:(1)当所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,

 

所以f(x)=

(2)由题意,不妨设A点在第一象限,坐标为(t,-t2-t+5)其中,

则S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.

(舍去),t2=1.

,所以S(t)在上单调递增,在上单调递减,

所以当t=1时,ABCD的面积取得极大值也是S(t)在上的最大值。

从而当t=1时,矩形ABCD的面积取得最大值6.

20、解:

21、解:

,要使在其定义域内为单调函数,只需内满足:恒成立.

① 当时,,∵,∴,∴

内为单调递减.  

② 当时,,对称轴为, ∴.

只需,即

内为单调递增。

 ③当时,,对称轴为.

只需,即恒成立.

综上可得,.     

22、解:(Ⅰ)

       

        同理,令

        ∴f(x)单调递增区间为,单调递减区间为.

        由此可知

   (Ⅱ)由(I)可知当时,有

        即.

    .

  (Ⅲ) 设函数

       

        ∴函数)上单调递增,在上单调递减.

        ∴的最小值为,即总有

        而

       

        即

        令

       

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步练习册答案