题目列表(包括答案和解析)
(本题满分12分)
对甲、乙两种商品的重量的误差进行抽查,测得数据如下(单位:
):
甲:13 15 14 14 9 14 21 9 10 11
乙:10 14 9 12 15 14 11 19 22 16
(1)画出样本数据的茎叶图,并指出甲,乙两种商品重量误差的中位数;
(2)计算甲种商品重量误差的样本方差;
(3)现从重量误差不低于15的乙种商品中随机抽取两件,求重量误差为19的商品被抽
中的概率。
(本题满分12分)设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an},{bn}的通项公式;
(2)求数列
的前n项和Sn.
(本题满分12分)
对甲、乙两种商品的重量的误差进行抽查,测得数据如下(单位:
):
甲:13 15 14 14 9 14 21 9 10 11
乙:10 14 9 12 15 14 11 19 22 16
(1)画出样本数据的茎叶图,并指出甲,乙两种商品重量误差的中位数;
(2)计算甲种商品重量误差的样本方差;
(3)现从重量误差不低于15的乙种商品中随机抽取两件,求重量误差为19的商品被抽
中的概率。
(本题满分12分)探究函数
的最小值,并确定取得最小值时x的值. 列表如下, 请观察表中y值随x值变化的特点,完成以下的问题.
| x | … | 0.25 | 0.5 | 0.75 | 1 | 1.1 | 1.2 | 1.5 | 2 | 3 | 5 | … |
| y | … | 8.063 | 4.25 | 3.229 | 3 | 3.028 | 3.081 | 3.583 | 5 | 9.667 | 25.4 | … |
(本题满分12分)对甲、乙两种商品的重量的误差进行抽查,测得数据如下(单位:
):
甲:13 15 14 14 9 14 21 9 10 11
乙:10 14 9 12 15 14 11 19 22 16
(1)画出样本数据的茎叶图,并指出甲,乙两种商品重量误差的中位数;
(2)计算甲种商品重量误差的样本方差;
(3)现从重量误差不低于15的乙种商品中随机抽取两件,求重量误差为19的商品被抽中的概率。
1――12 A B B B B C D D C A C B
13、1 14、e 15、
16、①②④
17、解
在
上是增函数,

方程
=x2 + (m ? 2 )x + 1 = 0的两个根在0至3之间
∴
∴
∴
<m≤0
依题意得:m的取值范围是:
<m≤-1或m>0
18、解:(1)
,
当a=1时 解集为
当a>1时,解集为
,
当0<a<1时,解集为
;
(2)依题意知f(1)是f(x)的最小值,又f(1)不可能是端点值,则f(1)是f(x)的一个极小值,由
,
19、解:(1)当
所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,
所以f(x)=
(2)由题意,不妨设A点在第一象限,坐标为(t,-t2-t+5)其中,
,
则S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.
,
令
得
(舍去),t2=1.
当
时
,所以S(t)在
上单调递增,在
上单调递减,
所以当t=1时,ABCD的面积取得极大值也是S(t)在
上的最大值。
从而当t=1时,矩形ABCD的面积取得最大值6.
20、解:

21、解:
,
令
,要使
在其定义域
内为单调函数,只需
在
内满足:
或
恒成立.
① 当
时,
,∵
,∴
,∴
,
∴
在
内为单调递减.
② 当
时,
,对称轴为
, ∴
.
只需
,即
时
,
,
∴
在
内为单调递增。
③当
时,
,对称轴为
.
只需
,即
时
在
恒成立.
综上可得,
或
.
22、解:(Ⅰ)

同理,令
∴f(x)单调递增区间为
,单调递减区间为
.
由此可知
(Ⅱ)由(I)可知当
时,有
,
即
.
.
(Ⅲ) 设函数

∴函数
)上单调递增,在
上单调递减.
∴
的最小值为
,即总有
而

即
令
则


湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com