(Ⅱ)若=.求使S>50成立的正整数n的最小值. 查看更多

 

题目列表(包括答案和解析)

已知数列{}满足,且的等差中项。

(Ⅰ)求数列{}的通项公式

(Ⅱ)若=,求使S>50成立的正整数n的最小值。

查看答案和解析>>

已知各项均为正数的数列{}满足,且的等差中项.

(Ⅰ)求数列{}的通项公式

(Ⅱ)若=,求使S>50成立的正整数n的最小值.

查看答案和解析>>

(2013•朝阳区一模)设τ=(x1,x2,…,x10)是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义S(τ)=
10k=1
|2xk-3xk+1|
,其中x11=x1
(Ⅰ)若τ=(10,9,8,7,6,5,4,3,2,1),求S(τ)的值;
(Ⅱ)求S(τ)的最大值;
(Ⅲ)求使S(τ)达到最大值的所有排列τ的个数.

查看答案和解析>>

某种商品现在定每件p元,每月卖出n件,因而现在每月售货总金额np元,设定价上涨x成(1成=10%),卖出数量减少y成,售货总金额变成现在的z倍.

   (1)用x和y表示z(x>0,y>0). w.w.w.k.s.5.u.c.o.m             

   (2)若,求使售货总金额有所增加的x值的范围.

 

查看答案和解析>>

设τ=(x1,x2,…,x10)是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义,其中x11=x1
(Ⅰ)若τ=(10,9,8,7,6,5,4,3,2,1),求S(τ)的值;
(Ⅱ)求S(τ)的最大值;
(Ⅲ)求使S(τ)达到最大值的所有排列τ的个数.

查看答案和解析>>

一、选择题:

   1.D  2.A  3.B  4.B   5.A  6.C  7.D   8.C   9.B  10.B  11.C  12.B

2,4,6

13.    14.7   15.2    16.

17.17.解:(1)  --------------------2分

 --------------------4分

--------------------6分

.--------------------8分

时(9分),取最大值.--------------------10分

(2)当时,,即,--------------------11分

解得.-------------------- 12分

18.解法一 “有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”,记“有放回摸球两次,两球恰好颜色不同”为事件A,

∵“两球恰好颜色不同”共2×4+4×2=16种可能,

解法二  “有放回摸取”可看作独立重复实验∵每次摸出一球得白球的概率为

∴“有放回摸两次,颜色不同”的概率为

(2)设摸得白球的个数为,依题意得

19.方法一

 

   (2)

20.解:(1)

  ∵ x≥1. ∴ ,-----------------------------------------------------2分

   (当x=1时,取最小值).

  ∴ a<3(a=3时也符合题意). ∴ a≤3.------------------------------------4分

  (2),即27-6a+3=0, ∴ a=5,.------------6分

,或 (舍去) --------------------------8分

时,; 当时,

  即当时,有极小值.又    ---------10分

   ∴ fx)在上的最小值是,最大值是. ----------12分

21.解:(Ⅰ)∵,∴,

∵数列{}的各项均为正数,∴

),所以数列{}是以2为公比的等比数列.………………3分

的等差中项,

,∴

∴数列{}的通项公式.……………………………………………………6分

   (Ⅱ)由(Ⅰ)及=得,, ……………………………8分

      1

   ②

②-1得,

=……………………………10分

要使S>50成立,只需2n+1-2>50成立,即2n+1>52,n³5

∴使S>50成立的正整数n的最小值为5. ……………………………12分

22.解:(Ⅰ)由已知得

 

              …………4分

  (Ⅱ)设P点坐标为(x,y)(x>0),由

        

                       …………5分    

         ∴   消去m,n可得

             ,又因     8分 

        ∴ P点的轨迹方程为  

        它表示以坐标原点为中心,焦点在轴上,且实轴长为2,焦距为4的双曲线

的右支             …………9分

(Ⅲ)设直线l的方程为,将其代入C的方程得

        

        即                          

 易知(否则,直线l的斜率为,它与渐近线平行,不符合题意)

        又     

       设,则

       ∵  l与C的两个交点轴的右侧

          

       ∴ ,即     

又由  同理可得       …………11分

        由

       

     ∴

   由

           

  由

           

消去

解之得: ,满足                …………13分

故所求直线l存在,其方程为:  …………14分