C. D. 查看更多

 

题目列表(包括答案和解析)

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B错;≥4,故A错;由基本不等式得,即,故C正确;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D错.故选C.

查看答案和解析>>

定义域为R的函数满足,且当时,,则当时,的最小值为( )

A B C D

 

查看答案和解析>>

.过点作圆的弦,其中弦长为整数的共有  (  )    

A.16条          B. 17条        C. 32条            D. 34条

 

查看答案和解析>>

 

一、选择题

ACADB   BBCAB

二、填空题

11.1   12.-6   13.0   14.4    15.450  16.31030

 

三、解答题:

17.(1)恰有3个红球的概率为                                     …………5分

   (2)停止摸球时,已知摸到红球次数为三次记为事件B

则事件B发生所摸球的次数为3次 4次或5次                       …………8分

所以              …………12分

 

18.解:设           …………2分

    即

                                              …………4分

   (1)当

                                                                 …………8分

   (2)当上是增函数,

    所以

    故                                           …………12分

 

19.解:(I)依题意

   

                                       …………3分

    故上是减函数

   

    即                                                            ……………6分

   (II)由(I)知上的减函数,

    又

                                                                    …………9分

    故

    因此,存在实数m,使得命p且q为真命题,且m的取值范围为

                                                                    …………12分

 

20.解:(1),                                           …………2分

    由题知:;                  …………6分

   (2)由(1)知:,                            …………8分

    恒成立,

    所以:                                 …………12分

 

21.解:(1)上,

    ,                                                                 …………1分

    为首项,公差为1的等差数列,

                                 …………4分

    当

                                                                    …………6分

    证明:(II)

    ,…………8分

   

    …………14分

 

22.解:(I)函数内是奇函数等价于

    对任意                                …………2分

   

    即,…………4分

    因为

    即,                                                                    …………6分

    此式对任意

    所以得b的取值范围是                                                 …………8分

   (II)设任意的

    得,                                            …………10分

    所以,                   …………12分

    从而

    因此内是减函数,具有单调性。                      …………14分

 

 


同步练习册答案