14.已知函数. 查看更多

 

题目列表(包括答案和解析)

已知函数,f(X)=log2x的反函数为f-1(x),等比数列{an}的公比为2,若f-1(a2)•f-1(a4)=210,则2f(a1)+f(a2)+…+f(a2009=(  )
A、21004×2008B、21005×2009C、21005×2008D、21004×2009

查看答案和解析>>

已知函数,f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ<
π2
)
的最大值为3,f(x)的图象的相邻两对称轴间的距离为2,在y轴上的截距为2.
(I)求函数f(x)的解析式;
(Ⅱ)求f(x)的单调递增区间.

查看答案和解析>>

已知函数,f(x)=x,g(x)=
3
8
x2+lnx+2

(Ⅰ) 求函数F(x)=g(x)-2•f(x)的极大值点与极小值点;
(Ⅱ) 若函数F(x)=g(x)-2•f(x)在[et,+∞)(t∈Z)上有零点,求t的最大值(e为自然对数的底数);
(Ⅲ) 设bn=f(n)
1
f(n+1)
(n∈N*),试问数列{bn}中是否存在相等的两项?若存在,求出所有相等的两项;若不存在,请说明理由.

查看答案和解析>>

已知函数,f(x)=
0(x>0)
-π(x=0)
x
2
3
+1(x<0)
,则复合函数f{f[f(-1)]}=(  )
A、x2+1
B、π2+1
C、-π
D、0

查看答案和解析>>

已知函数,f(x)=
log3x   x>0
2-x       x≤0
,若f(f(-3))∈[k,k+1),k∈Z,则k=
 
,当f(x)=1时,x=
 

查看答案和解析>>

 

一、选择题

ACADB   BBCAB

二、填空题

11.1   12.-6   13.0   14.4    15.450  16.31030

 

三、解答题:

17.(1)恰有3个红球的概率为                                     …………5分

   (2)停止摸球时,已知摸到红球次数为三次记为事件B

则事件B发生所摸球的次数为3次 4次或5次                       …………8分

所以              …………12分

 

18.解:设           …………2分

    即

                                              …………4分

   (1)当

                                                                 …………8分

   (2)当上是增函数,

    所以

    故                                           …………12分

 

19.解:(I)依题意

   

                                       …………3分

    故上是减函数

   

    即                                                            ……………6分

   (II)由(I)知上的减函数,

    又

                                                                    …………9分

    故

    因此,存在实数m,使得命p且q为真命题,且m的取值范围为

                                                                    …………12分

 

20.解:(1),                                           …………2分

    由题知:;                  …………6分

   (2)由(1)知:,                            …………8分

    恒成立,

    所以:                                 …………12分

 

21.解:(1)上,

    ,                                                                 …………1分

    为首项,公差为1的等差数列,

                                 …………4分

    当

                                                                    …………6分

    证明:(II)

    ,…………8分

   

    …………14分

 

22.解:(I)函数内是奇函数等价于

    对任意                                …………2分

   

    即,…………4分

    因为

    即,                                                                    …………6分

    此式对任意

    所以得b的取值范围是                                                 …………8分

   (II)设任意的

    得,                                            …………10分

    所以,                   …………12分

    从而

    因此内是减函数,具有单调性。                      …………14分

 

 


同步练习册答案