对于不等式<n+1,某同学的证明过程如下: 查看更多

 

题目列表(包括答案和解析)

对于不等式n+1(n∈N*),某同学的证明过程如下:

(1)当n=1时, <1+1,不等式成立.

(2)假设当n=k(k∈N*)时,不等式成立,即k+1,则当n=k+1时, ,

∴当n=k+1时,不等式成立.

上述证法(    )

A.过程全部正确

B.n=1验得不正确

C.归纳假设不正确

D.从n=kn=k+1的推理不正确

查看答案和解析>>

对于不等式数学公式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,数学公式<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即数学公式<k+1,则当n=k+1时,数学公式=数学公式数学公式=数学公式=(k+1)+1,∴当n=k+1时,不等式成立.
则上述证法


  1. A.
    过程全部正确
  2. B.
    n=1验得不正确
  3. C.
    归纳假设不正确
  4. D.
    从n=k到n=k+1的推理不正确

查看答案和解析>>

对于不等式
n2+n
<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,
12+1
<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即
k2+k
<k+1,则当n=k+1时,
(k+1)2+(k+1)
=
k2+3k+2
(k2+3k+2)+(k+2)
=
(k+2)2
=(k+1)+1,∴当n=k+1时,不等式成立.
则上述证法(  )
A、过程全部正确
B、n=1验得不正确
C、归纳假设不正确
D、从n=k到n=k+1的推理不正确

查看答案和解析>>

对于数列{xn},从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列.某同学在学习了这一个概念之后,打算研究首项为a1,公差为d的无穷等差数列{an}的子数列问题,为此,他取了其中第一项a1,第三项a3和第五项a5
(1)若a1,a3,a5成等比数列,求d的值;
(2)在a1=1,d=3 的无穷等差数列{an}中,是否存在无穷子数列{bn},使得数列(bn)为等比数列?若存在,请给出数列{bn}的通项公式并证明;若不存在,说明理由;
(3)他在研究过程中猜想了一个命题:“对于首项为正整数a,公比为正整数q(q>1)的无穷等比数列{cn},总可以找到一个子数列{bn},使得{dn}构成等差数列”.于是,他在数列{cn}中任取三项ck,cm,cn(k<m<n),由ck+cn与2cm的大小关系去判断该命题是否正确.他将得到什么结论?

查看答案和解析>>

(2012•徐汇区一模)对于数列{xn},从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列.某同学在学习了这一个概念之后,打算研究首项为a1,公差为d的无穷等差数列{an}的子数列问题,为此,他取了其中第一项a1,第三项a3和第五项a5
(1)若a1,a3,a5成等比数列,求d的值;
(2)在a1=1,d=3 的无穷等差数列{an}中,是否存在无穷子数列{bn},使得数列(bn)为等比数列?若存在,请给出数列{bn}的通项公式并证明;若不存在,说明理由;
(3)他在研究过程中猜想了一个命题:“对于首项为正整数a,公比为正整数q(q>1)的无穷等比数列{cn},总可以找到一个子数列{bn},使得{dn}构成等差数列”.于是,他在数列{cn}中任取三项ck,cm,cn(k<m<n),由ck+cn与2cm的大小关系去判断该命题是否正确.他将得到什么结论?

查看答案和解析>>


同步练习册答案