1.已知集合为 A.{1.2.3.4} B.{1.3.4.5} C.{2.3.4.5} D.{1.2.3.4.5} 查看更多

 

题目列表(包括答案和解析)

已知集合为实数,且为实数,且,则的元素个数为(     )

       A.4                    B.3                    C.2                    D.1

查看答案和解析>>

已知集合A={-1,0,1,2,3,2+1},集合B={1,2,3,4,5,9},映射f:A→B的对应法则为f:x→y=x2-2x+2,设集合M={m∈B|m在集合A中存在原象},集合N={n∈B|n在集合A中不存在原象},若从集合M、N中各取一个元素组成没有重复数字的两位数的个数( )
A.60
B.44
C.20
D.12

查看答案和解析>>

19、已知集合P={x|(x-1)2>16},Q={x|x2+(a-8)x-8a≤0}.
(1)求a的一个值,使它成为P∩Q={x|5<x≤8}的一个充分不必要条件;
(2)求a的取值范围,使它成为P∩Q={x|5<x≤8}的充要条件;
(3)求P∩Q.

查看答案和解析>>

已知集合A=[2,log2t],集合B={x|(x-2)(x-5)≤0},
(1)对于区间[a,b],定义此区间的“长度”为b-a,若A的区间“长度”为3,试求实数t的值.
(2)若A?B,试求实数t的取值范围.

查看答案和解析>>

已知集合A、B均为全集U={1,2,3,4}的子集,且?U(A∪B)={4},B={1,2},则A∩(?UB)=
{3}
{3}

查看答案和解析>>

 

一、选择题(本大题12小题,每小题5分,共60分。在每小题经出的四个选项中,只有一项是符合题目要求的。))

1―5DCBAC  6―10BCADB  11―12BB

二、填空题(本大题共4个小题,每小题5分,共20分。将符合题意的答案填在题后的横线上)

13.2   14.70  15.  16.

三、解答题:本大题共6个小题,共70分。解答应写出文字说明,证明过程或演算步骤。

17.解:(I)…………4分

      

       …………6分

   (II)

      

               

       …………8分

      

      

       …………10分

18.解:(I)设通晓英语的有人,

       且…………1分

       则依题意有:

       …………3分

       所以,这组志愿者有人。…………4分

   (II)所有可能的选法有种…………5分

       A被选中的选法有种…………7分

       A被选中的概率为…………8分

   (III)用N表示事件“B,C不全被选中”,则表示事件“B,C全被选中”……10分

       则…………11分

       所以B和C不全被选中的概率为……12分

       说明:其他解法请酌情给分。

   (I)

       AD为PD在平面ABC内的射影。

       又点E、F分别为AB、AC的中点,

      

       在中,由于AB=AC,故

       平面PAD……4分

   (II)设EF与AD相交于点G,连接PG。

       平面PAD,dm PAD,交线为PG,

       过A做AO平面PEF,则O在PG上,

       所以线段AO的长为点A到平面PEF的距离

       在

      

       即点A到平面PEF的距离为…………8分

       说 明:该问还可以用等体积转化法求解,请根据解答给分。

   (III)

       平面PAC。

       过A做,垂足为H,连接EH。

       则

       所以为二面角E―PF―A的一个平面角。

       在

      

       即二面角E―PF―A的正切值为

       …………12分

       解法二:

      

AB、AC、AP两两垂直,建立如图所示空间直角坐标系,

       则A(0,0,0),E(2,0,0),D(2,2,0),F(0,2,0),P(0,0,2)……2分

       且

      

      

       平面PAD

   (II)为平面PEF的一个法向量,

       则

       令…………6分

       故点A到平面PEF的距离为:

      

       所以点A到平面PEF的距离为…………8分

   (III)依题意为平面PAF的一个法向量,

       设二面角E―PF―A的大小为(由图知为锐角)

       则,…………10分

       即二面角E―PF―A的大小…………12分

20.解:(I)依题意有:  ①

       所以当  ②……2分

       ①-②得:化简得:

      

      

      

       所以数列是以2为公差的等差数列。…………4分

       故…………5分

       设

       是公比为64的等比数列

      

       …………8分

   (II)……9分

       …………10分

       …………11分

       …………12分

21.解:(I)设,则依题意有:

      

       故曲线C的方程为…………4分

       注:若直接用

       得出,给2分。

   (II)设,其坐标满足

      

       消去…………※

       故…………5分

      

       而

      

       化简整理得…………7分

       解得:时方程※的△>0

      

   (III)

      

      

      

       因为A在第一象限,故

       由

       故

       即在题设条件下,恒有…………12分

22.解:(I)…………3分

       处的切线互相平行

       …………5分

      

       …………6分

   (II)

      

       令

      

      

       当

       是单调增函数。…………9分

      

      

      

       恒成立,

       …………10分

       值满足下列不等式组

        ①,或

       不等式组①的解集为空集,解不等式组②得

       综上所述,满足条件的…………12分