题目列表(包括答案和解析)
|
|
在平面直角坐标系
中,已知曲线
上任意一点到点
的距离与到直线
的距离相等.
(Ⅰ)求曲线
的方程;
(Ⅱ)设
,
是
轴上的两点
,过点
分别作
轴的垂线,与曲线
分别交于点
,直线
与x轴交于点
,这样就称
确定了
.同样,可由
确定了
.现已知
,求
的值.
如图
⊥平面
,
⊥
,过
做![]()
的垂线,垂足为
,过
做
的垂线,垂足为
,求证
⊥
。以下是证明过程:
要证
⊥
只需证
⊥平面![]()
只需证
⊥
(因为
⊥
)
只需证
⊥平面![]()
只需证 ① (因为
⊥
)
只需证
⊥平面![]()
只需证 ② (因为
⊥
)
由只需证
⊥平面
可知上式成立
所以
⊥![]()
把证明过程补充完整① ②
![]()
已知
,
,设
是不等式组
,表示的平面区域内可行解的个数,由此可推出
,
,……, 则
( )
A.45 B.55 C.60 D.100
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com