精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,已知曲线上任意一点到点的距离与到直线的距离相等.

(Ⅰ)求曲线的方程;

(Ⅱ)设轴上的两点,过点分别作轴的垂线,与曲线分别交于点,直线与x轴交于点,这样就称确定了.同样,可由确定了.现已知,求的值.

 

【答案】

(Ⅰ);(Ⅱ).

【解析】

试题分析:(Ⅰ)根据抛物线的定义及标准方程求解;(Ⅱ)先由,再由.

试题解析:(Ⅰ)因为曲线上任意一点到点的距离与到直线的距离相等,

根据抛物线定义知,曲线是以点为焦点,直线为准线的抛物线,

故其方程为.                                                 4分

(Ⅱ)由题意知,,则

.                               6分

,得,即.                     8分

同理,,                                  9分

于是.                                                       10分

考点:抛物线的概念、曲线的交点.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案